Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Data Brief ; 38: 107405, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34621932

ABSTRACT

Phosphorus (P) runoff from agricultural land plays a critical role in downstream water quality. This article summarizes P and sediment runoff data for both snowmelt and rainfall runoff from 30 arable fields in the Canadian provinces of Saskatchewan, Manitoba and Ontario. The data were collected from 216 site-years of field experiments, with climates ranging from semi-arid to humid and a wide range of field management practices. In the article, mean annual and seasonal (in terms of snowmelt and rain) precipitation inputs, runoff depths, and P and sediment concentrations and loads are presented, along with ranges of yearly values. In addition, information of field management and soil characteristics (e.g. soil type and soil Olsen P) is also presented for each field. The data have potential to be reused for national and international cross-region comparisons of P and sediment losses, constructing and validating decision-support models and tools for assessing and managing P losses in both snowmelt and rainfall runoff, and informing beneficial management practices to improve agricultural water quality. Interpretation of the data is found in "Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results" [1].

2.
J Environ Qual ; 48(4): 831-840, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589673

ABSTRACT

Snowmelt runoff often comprises the majority of annual runoff in the Canadian Prairies and a significant proportion of total nutrient loss from agricultural land to surface water. Our objective was to determine the effect of agroecosystem management on snowmelt runoff and nutrient losses from a long-term field experiment at Swift Current, SK. Runoff quantity, nutrient concentrations, and loads were estimated after a change in management from conventionally tilled wheat ( L.)-fallow (Conv W-F) to no-till wheat-fallow and subsequently no-till wheat-pulse (NT W-F/LP) and to an organic system with a wheat-green manure rotation (Org W-GM). The conversion from conventional tillage practices to no-till increased snowmelt runoff likely due to snow trapping by standing stubble after summer fallow. Relatedly, runoff after no-till summer fallow had higher dissolved P losses (0.07 kg P ha). Replacing summer fallow with a pulse crop in the no-till rotation decreased snowmelt runoff losses and nutrient concentrations. The Org W-GM treatment had the lowest P loss after stubble (0.02 kg P ha) but had high dissolved P concentrations in snowmelt following the green manure (0.55 mg P L), suggesting a contribution from incorporated crop residues. In this semiarid climate with little runoff, dissolved reactive P and NO-N loads in snowmelt runoff were smaller than those reported elsewhere on the prairies (averaging <0.05 kg P ha yr, and <0.2 kg NO-N ha yr); however, the nutrient concentrations we observed, in particular for P, even without P fertilizer addition for organic production, question the practicality of agricultural management systems in this region meeting water quality guidelines.


Subject(s)
Nutrients , Water Movements , Agriculture , Canada , Environmental Monitoring , Phosphorus
3.
J Environ Qual ; 48(4): 792-802, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589688

ABSTRACT

Cold agricultural regions are important sites of global food production. This has contributed to widespread water quality degradation influenced by processes and hydrologic pathways that differ from warm region analogues. In cold regions, snowmelt is often a dominant period of nutrient loss. Freeze-thaw processes contribute to nutrient mobilization. Frozen ground can limit infiltration and interaction with soils, and minimal nutrient uptake during the nongrowing season may govern nutrient export from agricultural catchments. This paper reviews agronomic, biogeochemical, and hydrological characteristics of cold agricultural regions and synthesizes findings of 23 studies that are published in this special section, which provide new insights into nutrient cycling and hydrochemical processes, model developments, and the efficacy of different potentially beneficial management practices (BMPs) across varied cold regions. Growing evidence suggests the need to redefine optimum soil phosphorus levels and input regimes in cold regions to allow achievement of water quality targets while still supporting strong agricultural productivity. Practices should be considered through a regional and site-specific lens, due to potential interactions between climate, hydrology, vegetation, and soils, which influence the efficacy of nutrient, crop, water, and riparian buffer management. This leads to differing suitability of BMPs across varied cold agricultural regions. We propose a systematic approach (""), to achieve water quality objectives in variable and changing climates, which combines nutrient transport process onceptualization, nderstanding BMP functions, redicting effects of variability and change, onsideration of producer input and agronomic and environmental tradeoffs, practice daptation, nowledge mobilization, and valuation of water quality improvement.


Subject(s)
Cold Climate , Water Quality , Agriculture , Phosphorus , Soil
4.
J Environ Qual ; 48(4): 803-812, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589694

ABSTRACT

Managing P export from agricultural land is critical to address freshwater eutrophication. However, soil P management, and options to draw down soil P have received little attention in snowmelt-dominated regions because of limited interaction between soil and snowmelt. Here, we assessed the impacts of soil P drawdown (reducing fertilizer P inputs combined with harvest removal) on soil Olsen P dynamics, runoff P concentrations, and crop yields from 1997 to 2014 in paired fields in Manitoba, Canada. We observed that Olsen P concentrations in the 0- to 5-cm soil layer were negatively correlated with the cumulative P depletion and declined rapidly at the onset of the drawdown practice (3.1 to 5.4 mg kg yr during 2007-2010). In both snowmelt runoff and rainfall runoff, concentrations of total dissolved P (TDP) were positively correlated with the concentrations of soil Olsen P. Soil P drawdown to low to moderate fertility levels significantly decreased mean annual flow-weighted TDP concentrations in snowmelt runoff from 0.60 to 0.30 mg L in the field with high initial soil P and from 1.17 to 0.42 mg L in the field with very high initial soil P. Declines in TDP concentration in rainfall runoff were greater. Critically, yields of wheat ( spp.) and canola ( L.) were not affected by soil P depletion. In conclusion, we demonstrate that relatively rapid reductions in P loads are achievable at the field scale via managing P inputs and soil P pools, highlighting a management opportunity that can maintain food security while improving water security in cold regions.


Subject(s)
Phosphorus , Soil , Canada , Rain , Water Movements , Water Quality
5.
J Environ Qual ; 48(4): 850-868, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31589697

ABSTRACT

The use of cover crops and crop residues is a common strategy to mitigate sediment and nutrient losses from land to water. In cold climates, elevated dissolved P losses can occur associated with freeze-thaw of plant materials. Here, we review the impacts of cover crops and crop residues on dissolved P and total P loss in cold climates across ∼41 studies, exploring linkages between water-extractable P (WEP) in plant materials and P loss in surface runoff and subsurface drainage. Water-extractable P concentrations are influenced by plant type and freezing regimes. For example, WEP was greater in brassica cover crops than in non-brassicas, and increased with repeated freeze-thaw cycles. However, total P losses in surface runoff and subsurface drainage from cropped fields under cold climates were much lower than plant WEP, owing to retention of 45 to >99% of released P by soil. In cold climatic regions, cover crops and crop residues generally prevented soil erosion and loss of particle-bound P during nongrowing seasons in erodible landscapes but tended to elevate dissolved P loss in nonerodible soils. Their impact on total P loss was inconsistent across studies and complicated by soil, climate, and management factors. More research is needed to understand interactions between these factors and plant type that influence P loss, and to improve the assessment of crop contributions to P loss in field settings in cold climates. Further, tradeoffs between P loss and the control of sediment loss and N leaching by plants should be acknowledged.


Subject(s)
Cold Climate , Phosphorus , Agriculture , Crops, Agricultural , Soil , Water Movements
6.
Glob Chang Biol ; 22(3): 1008-28, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26301476

ABSTRACT

Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land-use change, land management and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges and highlight actions and policies to minimize adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development.


Subject(s)
Conservation of Natural Resources , Ecosystem , Environmental Pollution/adverse effects , Soil
7.
J Environ Qual ; 43(5): 1644-55, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25603250

ABSTRACT

An 8-yr field-scale study, 2005 to 2012, investigated effects of agricultural land use on nutrient and sediment losses during snowmelt runoff from four treatment fields in southern Manitoba. In 2005, two fields with a long-term history of annual crop (AC) production were planted to perennial forage (PF), while two other fields were left in AC production. In 2009, the AC fields were converted to PF, while the PF fields were returned to AC. Runoff flow rates were monitored at the lower edge of the fields, and nutrient concentrations of runoff water were determined. The effects of AC and PF on selected variables were similar for the spatial (between-fields) and temporal (within-field) comparisons. The flow-weighted mean concentrations (FWMCs) and loads of particulate N, P, and sediment were not affected by treatment. Soil test N and the FWMC and load of NO (NO + NO) were significantly greater in the AC treatment, but the FWMC and load of NH were greater in the PF treatment. Loads of total dissolved N (TDN) and total N (TN) were not affected by treatment, although the concentrations of TDN and TN were greater in the AC treatment. The PF treatment significantly increased FWMCs and loads of total dissolved P (TDP) and total P (TP). On an annual snowmelt runoff basis, the PF treatment increased the FWMC of TDP by 53% and TP by 52% and increased the load of TDP by 221% and TP by 160% compared with the AC treatment. The greater P and NH losses in the PF treatment were attributed mainly to nutrient release from forage residue due to freezing.

8.
J Environ Qual ; 43(5): 1679-89, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25603254

ABSTRACT

In a preceding study, converting conventional tillage (ConvT) to conservation tillage (ConsT) was reported to decrease nitrogen (N) but to increase phosphorus (P) losses during snowmelt runoff. A field-scale study was conducted from 2004 to 2012 to determine if conversion of ConsT to rotational tillage (RotaT), where conservation tillage was interrupted by a fall tillage pass every other year, could effectively reduce P losses compared with ConsT. The RotaT study was conducted on long-term paired watersheds established in 1993. The ConvT field in the pair has remained under ConvT practice since 1993, whereas tillage was minimized on the ConsT field from 1997 until 2007. In fall 2007, RotaT was introduced to the ConsT field, and heavy-duty cultivator passes were conducted in the late fall of years 2007, 2009, and 2011. Runoff volume and nutrient content were monitored at the edge of the two fields, and soil and crop residue samples were taken in each field. Greater soil Olsen P and more P released from crop residue are likely the reasons for the increased P losses in the ConsT treatment (2004-2007) relative to the ConvT treatment (2004-2007). Analysis of covariance indicated that, compared with ConsT (2004-2007), RotaT (2008-2012) increased the concentrations of dissolved organic carbon (DOC) by 62%, total dissolved N (TDN) by 190%, and total N (TN) by 272% and increased the loads of DOC by 34%, TDN by 34%, and TN by 60%. However, RotaT (2008-2012) decreased soil test P in surface soil, P released from crop residue, and duration of runoff compared with ConsT (2004-2007) and thus decreased the concentrations of total dissolved P (TDP) by 46% and total P (TP) by 38% and decreased the loads of TDP by 56% and TP by 42%. In the Canadian Prairies, where P is a major environmental concern compared with N, RotaT was demonstrated to be an effective practice to reduce P losses compared with ConsT.

9.
J Environ Qual ; 42(2): 484-96, 2013.
Article in English | MEDLINE | ID: mdl-23673841

ABSTRACT

A long-term, field-scale study in southern Manitoba, Canada, was used to identify the critical factors controlling yearly transport of nitrogen (N) and phosphorus (P) by snowmelt runoff. Flow monitoring and water sampling for total and dissolved N and P were performed at the edge of field. The flow-weighted mean concentrations and loads of N and P for the early (the first half of yearly total volume of snowmelt runoff), late (the second half of yearly total volume of snowmelt runoff), and yearly snowmelt runoff were calculated as response variables. A data set of management practices, weather variables, and hydrologic variables was generated and used as predictor variables. Partial least squares regression analysis indicated that critical factors affecting the water chemistry of snowmelt runoff depended on the water quality variable and stage of runoff. Management practices within each year, such as nitrogen application rate, number of tillage passes, and residue burial ratio, were critical factors for flow-weighted mean concentration of N, but not for P concentration or nutrient loads. However, the most important factors controlling nutrient concentrations and loads were those related to the volume of runoff, including snow water equivalent, flow rate, and runoff duration. The critical factors identified for field-scale yearly snowmelt losses provide the basis for modeling of nutrient losses in southern Manitoba and potentially throughout areas with similar climate in the northern Great Plains region, and will aid in the design of effective practices to reduce agricultural nonpoint nutrient pollution in downstream waters.


Subject(s)
Nitrogen , Phosphorus , Agriculture , Canada , Environmental Monitoring , Grassland , Nitrogen/chemistry , Phosphorus/chemistry , Water Movements
10.
J Environ Qual ; 42(3): 782-93, 2013.
Article in English | MEDLINE | ID: mdl-23673945

ABSTRACT

During the past four decades of crop production in the prairie region of Canada, there has been a dramatic shift from conventional management (CM) to conservation tillage management in which one or more tillage operations has been replaced by herbicide application. To determine whether this management shift has affected the quality of snowmelt runoff, field-scale side-by-side runoff watersheds were used in a 6-yr study. Herbicide concentrations and fluxes in snowmelt runoff water from CM and zero-till management (ZTM) systems were compared relative to an organic production system used as the control. Snowmelt runoff volume from the ZTM watershed exceeded that from the CM watershed in 5 yr of the 6-yr study. Frequencies of detection, concentrations and mass loss (mg ha) of the fall-applied herbicides were generally higher in snowmelt runoff relative to those of the spring-applied herbicides. On days when multiple consecutive samples were collected, herbicide concentrations generally decreased as runoff flow increased. Incorporation of trifluralin and triallate reduced their losses in snowmelt runoff by approximately 5 and 8 times, respectively. Regarding the amount of herbicide applied during the 6-yr study, percent loss varied from 0.002% for trifluralin to 0.15% for 2,4-D. Edge-of-field concentrations of 2,4-D, trifluralin, and triallate in snowmelt runoff frequently exceeded Canadian aquatic life water quality guidelines. The adoption of conservation tillage strategies for crop production resulted in increased (∼20%) herbicide use and an increased amount (∼25%) of herbicide transported in snowmelt runoff (8.6 versus 6.9 g ha).


Subject(s)
Agriculture , Environmental Monitoring , Canada , Herbicides , Water Movements , Water Pollutants, Chemical
11.
J Environ Qual ; 41(3): 882-92, 2012.
Article in English | MEDLINE | ID: mdl-22565269

ABSTRACT

Some imidazolinone herbicides have been shown to be mobile in soil, raising concern about their possible movement to ground water. Three imidazolinone herbicides (imazamethabenz-methyl, 497 g ha(-1); imazethapyr, 14.7 g ha(-1); and imazamox, 14.7 g ha(-1)) commonly used in crop production on the Canadian prairies were applied to a tile-drained field to assess their susceptibility to leach when subjected to sprinkler irrigation using a center pivot. Tile-drain flow began when the water table rose above tile-drain depth, and peak flow rates corresponded to the greatest depths of ground water above the tile drains. Interception of irrigation water by the tile drains in each quadrant of the field varied from ∼11 to 20% of the water applied. Under a worst-case scenario in which irrigation began the day after herbicide application and irrigation water was applied at 25 mm d(-1) for 12 d, there was evidence of preferential flow of all three herbicides and hydrolysis of imazamethabenz-methyl to imazamethabenz in the initial samples of tile-drain effluent. In subsequent samples, concentrations (analysis by LC-MS-MS) of the summation of imazamethabenz-methyl (25-24,000 ng L(-1)) plus its hydrolysis product imazamethabenz (63-26,500 ng L(-1)) greatly exceeded those of imazethapyr (<13-1260 ng L) and imazamox (19-599 ng L(-1)), thus reflecting relative application rates. In contrast, estimates of total transport of each herbicide from the root zone, which varied in each quadrant and ranged from 0.06 to 2.3% for imazamethabenz-methyl plus imazamethabenz, 0.71 to 3.1% for imazethapyr, and 0.61 to 2.8% for imazamox, did not reflect application rates. In shallow ground water (piezometer samples), there was inconsistent and infrequent detection all four compounds. With the frequency and amount of rainfall typically encountered in the prairie region of Canada, contamination of shallow ground water with detectable concentrations of the three imidazolinone herbicides would be unlikely.


Subject(s)
Herbicides/chemistry , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Agricultural Irrigation , Groundwater/chemistry , Imidazolines , Molecular Structure , Soil/chemistry , Time Factors
12.
Med Sci Law ; 52(4): 207-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22619376

ABSTRACT

AIMS: To determine whether the brain-body weight ratio is increased in sudden infant death syndrome (SIDS). METHODS: Review of autopsy files from Forensic Science SA, South Australia was undertaken over an eight-year period from 1999 to 2006, with classification of cases according to the San Diego definition. Sudden and/or unexpected deaths in previously healthy infants due to asphyxia or infection were selected as controls. RESULTS: There were 42 SIDS cases and 25 controls. The SIDS cases were aged from 1 to 42 weeks (mean: 16.26 ± 1.5 weeks) with a male to female ratio of 26:16. The control infants were aged from 3 to 48 weeks (mean: 19.24 ± 2.9 weeks) (P > 0.05) (M:F = 16:9) and included 13 cases of asphyxia and 12 cases of sepsis. Comparison of the brain-body weight ratios failed to demonstrate a significant difference: SIDS mean = 0.121 ± 0.003; control mean = 0.115 ± 0.003 (P > 0.05). CONCLUSION: Although, there was a trend towards higher brain-body weight ratios in SIDS infants, this did not reach significance. The role of brain weight in the aetiology of SIDS remains controversial.


Subject(s)
Body Weight , Brain/pathology , Sudden Infant Death/pathology , Case-Control Studies , Female , Forensic Pathology , Humans , Infant , Infant, Newborn , Male , Organ Size
13.
J Environ Qual ; 40(5): 1627-42, 2011.
Article in English | MEDLINE | ID: mdl-21869525

ABSTRACT

Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction of nutrient losses from the five BMPs was substantial.


Subject(s)
Nitrogen/analysis , Phosphorus/analysis , Water Movements , Water/chemistry , Manitoba
14.
J Environ Qual ; 39(1): 365-74, 2010.
Article in English | MEDLINE | ID: mdl-20048324

ABSTRACT

Sulfonylurea herbicides are widely applied on the Canadian prairies to control weeds in a variety of crops. Several sulfonylurea herbicides are mobile in soil, and there is concern about their possible movement to ground water. This study was performed to assess the susceptibility of three sulfonylurea herbicides commonly used in prairie crop production to leach under a worst-case scenario. Thifensulfuron-methyl, tribenuron-methyl, and rimsulfuron were applied to a 9-ha tile-drained field, and then approximately 300 mm of irrigation water were applied over a 2-wk period using a center pivot. The commencement of tile-drain flow corresponded to the rise of the water table above tile-drain depth, and peak flow rates corresponded to the greatest depths of ground water above the tile drains. The volume of irrigation water intercepted by the tile drains in each quadrant was determined by site hydrology and represented <10% of the irrigation water applied. Concentrations of thifensulfuron-methyl, tribenuron-methyl, and rimsulfuron in the tile-drain effluent ranged (analysis by liquid chromatography/tandem mass spectrometry) from 2.0 to 248 ng L(-1), not detected (nd) to 55 ng L(-1), and nd to 497 ng L(-1), respectively. Total herbicide transport from the root zone in each quadrant was estimated at <0.5% of the amount of each sulfonylurea herbicide applied. Thifensulfuron-methyl was the only herbicide detected in ground water, with concentrations ranging from 1.2 to 2.5 ng L(-1). With the frequency and amount of rainfall typically encountered in the prairie region of Canada, detectable concentrations (>1 ng L(-1)) of these sulfonylurea herbicides in ground water would be unlikely.


Subject(s)
Herbicides/chemistry , Sulfonylurea Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Agriculture , Environmental Monitoring , Molecular Structure , Time Factors , Water Pollution, Chemical
15.
J Environ Qual ; 38(4): 1719-27, 2009.
Article in English | MEDLINE | ID: mdl-19549949

ABSTRACT

Livestock manure containing antimicrobials becomes a possible source of these compounds to surface and ground waters when applied to cropland as a nutrient source. The potential for transport of the veterinary antimicrobial lincomycin to surface waters via surface runoff and to leach to ground water was assessed by monitoring manure-amended soil, simulated rainfall runoff, snowmelt runoff, and ground water over a 2-yr period in Saskatchewan, Canada, after fall application of liquid swine manure to cropland. Liquid chromatography tandem mass spectrometry was used to quantify lincomycin in all matrix extracts. Initial concentrations in soil (46.3-117 mug kg(-1)) were not significantly different (p > 0.05) for manure application rates ranging from 60,000 to 95,000 L ha(-1) and had decreased to nondetectable levels by mid-summer the following year. After fall manure application, lincomycin was present in all simulated rainfall runoff (0.07-2.7 mug L(-1)) and all snowmelt runoff (0.038-3.2 mug L(-1)) samples. Concentrations in snowmelt runoff were not significantly different from those in simulated rainfall runoff the previous fall. On average, lincomycin concentrations in ephemeral wetlands dissipated by 50% after 31 d. Concentrations of lincomycin in ground water were generally <0.005 mug L(-1). This study demonstrates that the management practice of using livestock manure from confined animal feeding operations as a plant nutrient source on cropland may result in antimicrobial transport to surface and ground waters.


Subject(s)
Anti-Bacterial Agents/chemistry , Crops, Agricultural , Lincomycin/chemistry , Manure , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/analysis , Chromatography, Liquid , Environmental Monitoring , Lincomycin/analysis , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis
16.
J Environ Qual ; 33(1): 302-15, 2004.
Article in English | MEDLINE | ID: mdl-14964385

ABSTRACT

Prairie farm dugouts are frequently constructed for use as potable water sources. Consequently, cumulative pesticide inputs via atmospheric deposition and surface runoff may constitute a risk to human health. Since, relative to other pesticides, herbicides are used in greatest amount on the Canadian prairies, herbicide concentrations were intensively monitored in three dugouts over three growing seasons. Herbicides were detected in the water of all three dugouts each growing season which may reflect cumulative inputs from atmospheric and surface processes over the lifetimes of the dugouts, which varied from 11 to 22 yr. Detections, which were not continuous, tended to be seasonal in nature. During the 3-yr study, detections were most frequent during the spring application period and late fall following dugout turnover. Between these periods, herbicide concentrations generally decreased to below detection limits. The reappearance of herbicides in the dugout water during fall turnover and in concentrations generally greater than those present during the spring application period suggest that, under appropriate environmental conditions, the bottom sediments may act as a source of herbicides to the water column. In general, herbicide inputs due to deposition of application drift did not result in detectable concentrations of herbicides in the dugouts. In the only year that winter samples were monitored, herbicides were also detected during ice cover. On the basis of monthly sampling over each growing season, median concentrations of 9 of the 10 herbicides monitored were less than 0.05 microg L(-1). The exception, 2,4-D, which has been used extensively on the Canadian prairies for more than 50 yr and in greatest amounts, was the most frequently detected herbicide. In no case did herbicide concentrations exceed Canadian drinking water guidelines; however, on occasion maximum herbicide concentrations did exceed aquatic life and irrigation water guidelines.


Subject(s)
Agriculture , Fresh Water/chemistry , Herbicides/chemistry , Soil , Water Pollutants, Chemical , Environmental Monitoring , Humans , Saskatchewan , Seasons , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...