Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 13(2): 364-385, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36351055

ABSTRACT

A lack of models that recapitulate the complexity of human bone marrow has hampered mechanistic studies of normal and malignant hematopoiesis and the validation of novel therapies. Here, we describe a step-wise, directed-differentiation protocol in which organoids are generated from induced pluripotent stem cells committed to mesenchymal, endothelial, and hematopoietic lineages. These 3D structures capture key features of human bone marrow-stroma, lumen-forming sinusoids, and myeloid cells including proplatelet-forming megakaryocytes. The organoids supported the engraftment and survival of cells from patients with blood malignancies, including cancer types notoriously difficult to maintain ex vivo. Fibrosis of the organoid occurred following TGFß stimulation and engraftment with myelofibrosis but not healthy donor-derived cells, validating this platform as a powerful tool for studies of malignant cells and their interactions within a human bone marrow-like milieu. This enabling technology is likely to accelerate the discovery and prioritization of novel targets for bone marrow disorders and blood cancers. SIGNIFICANCE: We present a human bone marrow organoid that supports the growth of primary cells from patients with myeloid and lymphoid blood cancers. This model allows for mechanistic studies of blood cancers in the context of their microenvironment and provides a much-needed ex vivo tool for the prioritization of new therapeutics. See related commentary by Derecka and Crispino, p. 263. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Bone Marrow , Hematologic Neoplasms , Humans , Bone Marrow Cells/physiology , Bone Marrow Transplantation , Organoids , Tumor Microenvironment
2.
Blood ; 118(14): 3911-21, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21821710

ABSTRACT

Adult T-cell leukemia/lymphoma (ATLL) is an incurable disease where most patients succumb within the first year of diagnosis. Both standard chemotherapy regimens and mAbs directed against ATLL tumor markers do not alter this aggressive clinical course. Therapeutic development would be facilitated by the discovery of genes and pathways that drive or initiate ATLL, but so far amenable drug targets have not been forthcoming. Because the IL-2 signaling pathway plays a prominent role in ATLL pathogenesis, mutational analysis of pathway components should yield interesting results. In this study, we focused on JAK3, the nonreceptor tyrosine kinase that signals from the IL-2R, where activating mutations have been found in diverse neoplasms. We screened 36 ATLL patients and 24 ethnically matched controls and found 4 patients with mutations in JAK3. These somatic, missense mutations occurred in the N-terminal FERM (founding members: band 4.1, ezrin, radixin, and moesin) domain and induced gain of function in JAK3. Importantly, we show that these mutant JAK3s are inhibited with a specific kinase inhibitor already in human clinical testing. Our findings underscore the importance of this pathway in ATLL development and offer a therapeutic handle for this incurable cancer.


Subject(s)
Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Leukemia-Lymphoma, Adult T-Cell/genetics , Mutation, Missense , Amino Acid Sequence , Animals , Cell Line , DNA Mutational Analysis , Humans , Janus Kinase 3/antagonists & inhibitors , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Leukemia-Lymphoma, Adult T-Cell/metabolism , Models, Molecular , Molecular Sequence Data , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , STAT5 Transcription Factor/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...