Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Lipid Res ; 65(2): 100498, 2024 02.
Article in English | MEDLINE | ID: mdl-38216055

ABSTRACT

Apolipoprotein E (APOE) genetic variants are most notably known for their divergent impact on the risk of developing Alzheimer's disease. While APOE genotype has been consistently shown to modulate lipid metabolism in a variety of cellular contexts, the effect of APOE alleles on the lipidome in hepatocytes is unknown. In this study, we investigated the contribution of APOE alleles to lipidomic profiles of donor-derived primary human hepatocytes from 77 subjects. Lipidomic data obtained by liquid chromatography-mass spectrometry were analyzed across ε2/ε3, ε3/ε3, and ε3/ε4 genotypes to reveal how APOE modulates lipid relative levels over age and between groups. Hepatic APOE concentration, measured by ELISA, was assessed for correlation with lipid abundance in subjects grouped as per APOE genotype and sex. APOE genotype-specific differential lipidomic signatures associated with age for multiple lipid classes but did not differ between sexes. Compared to ε2/ε3, ε3/ε4 hepatocytes had higher abundance of acylcarnitines (AC) and acylphosphatidylglycerol (AcylPG) as a class, as well as higher medium and long-chain ACs, AcylPG, phosphatidylglycerol (PG), bis(monoacylglycerol)phosphate (BMP), monoacylglycerol (MG) and diacylglycerol (DG) species. The ε3/ε4 hepatocytes also exhibited a higher abundance of medium and long-chain ACs compared to the ε3/ε3 hepatocytes. Only in the ε3/ε4 hepatocytes, APOE concentration was lower and showed a negative correlation with BMP levels, specifically in females. APOE genotype dictates a differential lipidome in primary human hepatocytes. The lipids involved suggest mitochondrial dysfunction with accompanying alterations in neutral lipid storage, reflective of a general disturbance of free fatty acid metabolism in human hepatocytes with the ε4 allele.


Subject(s)
Apolipoproteins E , Lipidomics , Female , Humans , Alleles , Apolipoproteins E/genetics , Genotype , Hepatocytes
2.
Drug Metab Dispos ; 51(12): 1551-1560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751997

ABSTRACT

Pharmaceutical companies subject all new molecular entities to a series of in vitro metabolic characterizations that guide the selection and/or design of compounds predicted to have favorable pharmacokinetic properties in humans. Current drug metabolism research is based on liver tissue predominantly obtained from people of European origin, with limited access to tissue from people of African origin. Given the interindividual and interpopulation genomic variability in genes encoding drug-metabolizing enzymes, efficacy and safety of some drugs are poorly predicted for African populations. To address this gap, we have established the first comprehensive liver tissue biorepository inclusive of people of African origin. The African Liver Tissue Biorepository Consortium currently includes three institutions in South Africa and one in Zimbabwe, with plans to expand to other African countries. The program has collected 67 liver samples as of July 2023. DNA from the donors was genotyped for 120 variants in 46 pharmacogenes and revealed variants that are uniquely found in African populations, including the low-activity, African-specific CYP2C9*5 and *8 variants relevant to the metabolism of diclofenac. Larger liver tissue samples were used to isolate primary human hepatocytes. Viability of the hepatocytes and microsomal fractions was demonstrated by the activity of selected cytochrome P450s. This resource will be used to ensure the safety and efficacy of existing and new drugs in African populations. This will be done by characterizing compounds for properties such as drug clearance, metabolite and enzyme identification, and drug-drug and drug-gene interactions. SIGNIFICANCE STATEMENT: Standard optimization of the drug metabolism of new molecular entities in the pharmaceutical industry uses subcellular fractions such as microsomes and isolated primary hepatocytes, being done mainly with tissue from donors of European origin. Pharmacogenetics research has shown that variants in genes coding for drug-metabolizing enzymes have interindividual and interpopulation differences. We established an African liver tissue biorepository that will be useful in ensuring drug discovery and development research takes into account drug responses in people of African origin.


Subject(s)
Cytochrome P-450 Enzyme System , Pharmacogenetics , Humans , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Metabolic Clearance Rate , Drug Discovery
3.
Nat Metab ; 5(7): 1188-1203, 2023 07.
Article in English | MEDLINE | ID: mdl-37414931

ABSTRACT

Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Myeloid Cells/metabolism , Stress, Physiological
4.
Cells ; 12(12)2023 06 19.
Article in English | MEDLINE | ID: mdl-37371133

ABSTRACT

Alpha-1 antitrypsin deficiency (A1ATD) is underdiagnosed and associated with liver diseases. Here, we genotyped 130 patients with biliary tract cancer (BTC) scheduled for liver resection and found A1ATD in 10.8% of the patients. A1ATD was found in all BTC subtypes, and patients had similar clinical features as non-A1ATD BTC, not permitting their identification using clinical routine liver tests. In intrahepatic cholangiocarcinoma (iCCA), the abundance of A1AT protein was increased in the tumor and appeared to be influenced by the genomic alterations. On the one hand, BTC with A1ATD had lower perineural invasion at histopathology and displayed a longer survival, suggesting that a deficiency in this protein is associated with a less aggressive phenotype. On the other hand, iCCA with high A1AT expression had more advanced tumor staging and enriched pathways for complement system and extracellular matrix interactions, indicating that A1AT protein might contribute to a more aggressive phenotype. With increased awareness, screening, and basic studies, A1ATD could represent one more layer of stratification for future targeted therapies in BTC.


Subject(s)
Biliary Tract Neoplasms , alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Humans , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/diagnosis , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/genetics , Biliary Tract Neoplasms/etiology , Biliary Tract Neoplasms/genetics , Phenotype , Prevalence
5.
Mol Psychiatry ; 27(8): 3533-3543, 2022 08.
Article in English | MEDLINE | ID: mdl-35418601

ABSTRACT

Liver-generated plasma apolipoprotein E (apoE) does not enter the brain but nonetheless correlates with Alzheimer's disease (AD) risk and AD biomarker levels. Carriers of APOEε4, the strongest genetic AD risk factor, exhibit lower plasma apoE and altered brain integrity already at mid-life versus non-APOEε4 carriers. Whether altered plasma liver-derived apoE or specifically an APOEε4 liver phenotype promotes neurodegeneration is unknown. Here we investigated the brains of Fah-/-, Rag2-/-, Il2rg-/- mice on the Non-Obese Diabetic (NOD) background (FRGN) with humanized-livers of an AD risk-associated APOE ε4/ε4 versus an APOE ε2/ε3 genotype. Reduced endogenous mouse apoE levels in the brains of APOE ε4/ε4 liver mice were accompanied by various changes in markers of synaptic integrity, neuroinflammation and insulin signaling. Plasma apoE4 levels were associated with unfavorable changes in several of the assessed markers. These results propose a previously unexplored role of the liver in the APOEε4-associated risk of neurodegenerative disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Mice , Apolipoprotein E4/genetics , Mice, Inbred NOD , Apolipoproteins E/genetics , Brain/metabolism , Alzheimer Disease/genetics , Genotype , Biomarkers , Liver/metabolism
6.
Cell Transplant ; 31: 9636897211069900, 2022.
Article in English | MEDLINE | ID: mdl-35094608

ABSTRACT

Hepatocyte transplantation is a promising treatment for liver failure and inborn metabolic liver diseases, but progress has been hampered by a scarcity of available organs. Here, hepatocytes isolated from livers procured for a neonatal hepatocyte donation program within a research setting were assessed for metabolic function and suitability for transplantation. Organ donation was considered for infants who died in neonatal intensive care in the Stockholm region during 2015-2021. Inclusion was assessed when a decision to discontinue life-sustaining treatment had been made and hepatectomy performed after declaration of death. Hepatocyte isolation was performed by three-step collagenase perfusion. Hepatocyte viability, yield, and function were assessed using fresh and cryopreserved cells. Engraftment and maturation of cryopreserved neonatal hepatocytes were assessed by transplantation into an immunodeficient mouse model and analysis of the gene expression of phase I, phase II, and liver-specific enzymes and proteins. Twelve livers were procured. Median warm ischemia time (WIT) was 190 [interquartile range (IQR): 80-210] minutes. Median viability was 86% (IQR: 71%-91%). Median yield was 6.9 (IQR: 3.4-12.8) x106 viable hepatocytes/g. Transplantation into immunodeficient mice resulted in good engraftment and maturation of hepatocyte-specific proteins and enzymes. A neonatal organ donation program including preterm born infants was found to be feasible. Hepatocytes isolated from neonatal donors had good viability, function, and engraftment despite prolonged WIT. Therefore, neonatal livers should be considered as a donor source for clinical hepatocyte transplantation, even in cases with extended WIT.


Subject(s)
Liver Transplantation , Tissue and Organ Procurement , Animals , Hepatocytes/metabolism , Humans , Infant, Newborn , Liver/metabolism , Liver Transplantation/methods , Mice , Tissue Donors
7.
Hepatology ; 75(5): 1154-1168, 2022 05.
Article in English | MEDLINE | ID: mdl-34719787

ABSTRACT

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a malignancy arising from biliary epithelial cells of intra- and extrahepatic bile ducts with dismal prognosis and few nonsurgical treatments available. Despite recent success in the immunotherapy-based treatment of many tumor types, this has not been successfully translated to CCA. Mucosal-associated invariant T (MAIT) cells are cytotoxic innate-like T cells highly enriched in the human liver, where they are located in close proximity to the biliary epithelium. Here, we aimed to comprehensively characterize MAIT cells in intrahepatic (iCCA) and perihilar CCA (pCCA). APPROACH AND RESULTS: Liver tissue from patients with CCA was used to study immune cells, including MAIT cells, in tumor-affected and surrounding tissue by immunohistochemistry, RNA-sequencing, and multicolor flow cytometry. The iCCA and pCCA tumor microenvironment was characterized by the presence of both cytotoxic T cells and high numbers of regulatory T cells. In contrast, MAIT cells were heterogenously lost from tumors compared to the surrounding liver tissue. This loss possibly occurred in response to increased bacterial burden within tumors. The residual intratumoral MAIT cell population exhibited phenotypic and transcriptomic alterations, but a preserved receptor repertoire for interaction with tumor cells. Finally, the high presence of MAIT cells in livers of iCCA patients predicted long-term survival in two independent cohorts and was associated with a favorable antitumor immune signature. CONCLUSIONS: MAIT cell tumor infiltration associates with favorable immunological fitness and predicts survival in CCA.


Subject(s)
Bile Duct Neoplasms , Bile Ducts, Extrahepatic , Cholangiocarcinoma , Mucosal-Associated Invariant T Cells , Bile Duct Neoplasms/pathology , Bile Ducts, Extrahepatic/pathology , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/pathology , Humans , Tumor Microenvironment
8.
Nat Commun ; 12(1): 7046, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857782

ABSTRACT

Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.


Subject(s)
Genetic Heterogeneity , Liver/metabolism , Transcriptome , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Erythroblasts/cytology , Erythroblasts/metabolism , Female , Gene Expression Profiling , Gene Ontology , Hepatocytes/cytology , Hepatocytes/metabolism , Kupffer Cells/cytology , Kupffer Cells/metabolism , Liver/cytology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Annotation , Neutrophils/cytology , Neutrophils/metabolism
9.
Gastroenterology ; 161(6): 1982-1997.e11, 2021 12.
Article in English | MEDLINE | ID: mdl-34425095

ABSTRACT

BACKGROUND AND AIMS: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. METHODS: We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. RESULTS: Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. CONCLUSIONS: Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.


Subject(s)
Fatty Liver/enzymology , Fumarate Hydratase/metabolism , Insulin Resistance , Liver/enzymology , Macrophages/enzymology , MicroRNAs/metabolism , NF-E2-Related Factor 2/metabolism , Obesity/enzymology , Animals , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Citric Acid Cycle , Disease Models, Animal , Fatty Liver/genetics , Fumarate Hydratase/genetics , Fumarates/metabolism , Humans , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , Obesity/genetics , Oxidative Stress , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction , Succinates/metabolism
10.
Sci Adv ; 7(30)2021 Jul.
Article in English | MEDLINE | ID: mdl-34290096

ABSTRACT

Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.

11.
Sci Transl Med ; 13(599)2021 06 23.
Article in English | MEDLINE | ID: mdl-34162753

ABSTRACT

The human biliary system, a mucosal barrier tissue connecting the liver and intestine, is an organ often affected by serious inflammatory and malignant diseases. Although these diseases are linked to immunological processes, the biliary system represents an unexplored immunological niche. By combining endoscopy-guided sampling of the biliary tree with a high-dimensional analysis approach, comprehensive mapping of the human biliary immunological landscape in patients with primary sclerosing cholangitis (PSC), a severe biliary inflammatory disease, was conducted. Major differences in immune cell composition in bile ducts compared to blood were revealed. Furthermore, biliary inflammation in patients with PSC was characterized by high presence of neutrophils and T cells as compared to control individuals without PSC. The biliary T cells displayed a CD103+CD69+ effector memory phenotype, a combined gut and liver homing profile, and produced interleukin-17 (IL-17) and IL-22. Biliary neutrophil infiltration in PSC associated with CXCL8, possibly produced by resident T cells, and CXCL16 was linked to the enrichment of T cells. This study uncovers the immunological niche of human bile ducts, defines a local immune network between neutrophils and biliary-resident T cells in PSC, and provides a resource for future studies of the immune responses in biliary disorders.


Subject(s)
Biliary Tract , Cholangitis, Sclerosing , Humans , Liver , Neutrophils , T-Lymphocytes
12.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530582

ABSTRACT

Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any genes of the cycle. In severe cases, currently available therapies are marginally effective, with liver transplantation being the only definitive treatment. Donor liver availability can limit even this therapy. Identification of novel therapeutics for genetic-based liver diseases requires models that provide measurable hepatic functions and phenotypes. Advances in stem cell and genome editing technologies could provide models for the investigation of cell-based genetic diseases, as well as the platforms for drug discovery. This report demonstrates a practical, and widely applicable, approach that includes the successful reprogramming of somatic cells from a patient with a urea cycle defect, their genetic correction and differentiation into hepatic organoids, and the subsequent demonstration of genetic and phenotypic change in the edited cells consistent with the correction of the defect. While individually rare, there is a large number of other genetic-based liver diseases. The approach described here could be applied to a broad range and a large number of patients with these hepatic diseases where it could serve as an in vitro model, as well as identify successful strategies for corrective cell-based therapy.


Subject(s)
Gene Editing , Hepatocytes/metabolism , Metabolic Networks and Pathways/genetics , Organoids/cytology , Stem Cells/metabolism , Urea/metabolism , Biomarkers , CRISPR-Cas Systems , Cell Differentiation , Cells, Cultured , Disease Susceptibility , Gene Expression Profiling , Genetic Association Studies , Genetic Variation , Hepatocytes/cytology , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Stem Cells/cytology
13.
Elife ; 102021 02 26.
Article in English | MEDLINE | ID: mdl-33635272

ABSTRACT

Organ function depends on tissues adopting the correct architecture. However, insights into organ architecture are currently hampered by an absence of standardized quantitative 3D analysis. We aimed to develop a robust technology to visualize, digitalize, and segment the architecture of two tubular systems in 3D: double resin casting micro computed tomography (DUCT). As proof of principle, we applied DUCT to a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice), characterized by intrahepatic bile duct paucity, that can spontaneously generate a biliary system in adulthood. DUCT identified increased central biliary branching and peripheral bile duct tortuosity as two compensatory processes occurring in distinct regions of Jag1Ndr/Ndr liver, leading to full reconstitution of wild-type biliary volume and phenotypic recovery. DUCT is thus a powerful new technology for 3D analysis, which can reveal novel phenotypes and provide a standardized method of defining liver architecture in mouse models.


Many essential parts of the body contain tubes: the liver for example, contains bile ducts and blood vessels. These tubes develop right next to each other, like entwined trees. To do their jobs, these ducts must communicate and collaborate, but they do not always grow properly. For example, babies with Alagille syndrome are born with few or no bile ducts, resulting in serious liver disease. Understanding the architecture of the tubes in their livers could explain why some children with this syndrome improve with time, but many others need a liver transplant. Visualising biological tubes in three dimensions is challenging. One major roadblock is the difficulty in seeing several tubular structures at once. Traditional microscopic imaging of anatomy is in two dimensions, using slices of tissue. This approach shows the cross-sections of tubes, but not how the ducts connect and interact. An alternative is to use micro computed tomography scans, which use X-rays to examine structures in three dimensions. The challenge with this approach is that soft tissues, which tubes in the body are made of, do not show up well on X-ray. One way to solve this is to fill the ducts with X-ray absorbing resins, making a cast of the entire tree structure. The question is, can two closely connected tree structures be distinguished if they are cast at the same time? To address this question, Hankeova, Salplachta et al. developed a technique called double resin casting micro computed tomography, or DUCT for short. The approach involved making casts of tube systems using two types of resin that show up differently under X-rays. The new technique was tested on a mouse model of Alagille syndrome. One resin was injected into the bile ducts, and another into the blood vessels. This allowed Hankeova, Salplachta et al. to reconstruction both trees digitally, revealing their length, volume, branching, and interactions. In healthy mice, the bile ducts were straight with uniform branches, but in mice with Alagille syndrome ducts were wiggly, and had extra branches in the centre of the liver. This new imaging technique could improve the understanding of tube systems in animal models of diseases, both in the liver and in other organs with tubes, such as the lungs or the kidneys. Hankeova, Salplachta et al. also lay a foundation for a deeper understanding of bile duct recovery in Alagille syndrome. In the future, DUCT could help researchers to see how mouse bile ducts change in response to experimental therapies.


Subject(s)
Alagille Syndrome/physiopathology , Bile Ducts/physiopathology , X-Ray Microtomography/methods , Animals , Bile Ducts/growth & development , Disease Models, Animal , Mice , Mice, Transgenic , X-Ray Microtomography/classification
14.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33484963

ABSTRACT

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Subject(s)
Gene Editing/methods , Hepatocytes/transplantation , Mutation , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Ornithine Carbamoyltransferase/genetics , Adult , Aged , Ammonia/metabolism , Animals , Cells, Cultured , Child , Disease Models, Animal , Female , Gene Expression Regulation , Hepatocytes/chemistry , Hepatocytes/cytology , Humans , Introns , Male , Mice , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Orotic Acid/urine , RNA Splicing
16.
Sci Rep ; 10(1): 7052, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32341402

ABSTRACT

Alpha 1-antitrypsin (AAT) deficiency arises from an inherited mutation in the SERPINA1 gene. The disease causes damage in the liver where the majority of the AAT protein is produced. Lack of functioning circulating AAT protein also causes uninhibited elastolytic activity in the lungs leading to AAT deficiency-related emphysema. The only therapy apart from liver transplantation is augmentation with human AAT protein pooled from sera, which is only reserved for patients with advanced lung disease caused by severe AAT deficiency. We tested modified mRNA encoding human AAT in primary human hepatocytes in culture, including hepatocytes from AAT deficient patients. Both expression and functional activity were investigated. Secreted AAT protein increased from 1,14 to 3,43 µg/ml in media from primary human hepatocytes following mRNA treatment as investigated by ELISA and western blot. The translated protein showed activity and protease inhibitory function as measured by elastase activity assay. Also, mRNA formulation in lipid nanoparticles was assessed for systemic delivery in both wild type mice and the NSG-PiZ transgenic mouse model of AAT deficiency. Systemic intravenous delivery of modified mRNA led to hepatic uptake and translation into a functioning protein in mice. These data support the use of systemic mRNA therapy as a potential treatment for AAT deficiency.


Subject(s)
RNA, Messenger/metabolism , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/therapy , Animals , Blotting, Western , Cells, Cultured , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Humans , Nanoparticles/chemistry , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/physiology
17.
J Clin Exp Hepatol ; 10(2): 106-113, 2020.
Article in English | MEDLINE | ID: mdl-32189925

ABSTRACT

BACKGROUND: ABO blood group antigens in the liver are expressed mainly on endothelial cells or biliary epithelial cells but not on hepatocytes. This suggests that ABO-incompatible hepatocyte transplantation (ABOi-HTx) is theoretically feasible. However, the effects of stress on ABO blood group antigen expression caused by isolation and intraportal infusion require thorough investigation before ABOi-HTx can be implemented in clinical settings. METHODS: Human hepatocytes were isolated from liver tissue obtained from liver resection or deceased donor livers. The expression of blood group antigens on cryopreserved human liver tissues and isolated hepatocyte smear specimens were examined by immunofluorescent staining. The effect of proinflammatory cytokines on blood group antigen expression of hepatocytes was evaluated by flow cytometry. Instant blood-mediated inflammatory reaction after hepatocyte incubation with ABO-incompatible whole blood was examined using the tubing loop model. RESULTS: Blood group antigens were mainly expressed on vessels in the portal area. In hepatocyte smear specimens, isolated hepatocytes did not express blood group antigens. In contrast, a subset of cells in the smear specimens of nonparenchymal liver cells stained positive. In the flow cytometry analysis, isolated hepatocytes were negative for blood group antigens, even after 4-h incubation with cytokines. Platelet counts and complement activation were not significantly different in ABO-identical versus ABO-incompatible settings in the tubing loop model. CONCLUSION: Our study showed that blood group antigens were not expressed on hepatocytes, even after isolation procedures or subsequent incubation with cytokines. This finding is an important step toward removing the restriction of ABO matching in hepatocyte transplantation. Our results suggest that ABOi-HTx is a feasible therapeutic option, especially in patients who require urgent treatment with freshly isolated hepatocytes, such as those with acute liver failure.

18.
Sci Transl Med ; 12(532)2020 02 26.
Article in English | MEDLINE | ID: mdl-32102936

ABSTRACT

Obesity and insulin resistance are risk factors for nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide. Because no approved medication nor an accurate and noninvasive diagnosis is currently available for NAFLD, there is a clear need to better understand the link between obesity and NAFLD. Lipid accumulation during obesity is known to be associated with oxidative stress and inflammatory activation of liver macrophages (LMs). However, we show that although LMs do not become proinflammatory during obesity, they display signs of oxidative stress. In livers of both humans and mice, antioxidant nuclear factor erythroid 2-related factor 2 (NRF2) was down-regulated with obesity and insulin resistance, yielding an impaired response to lipid accumulation. At the molecular level, a microRNA-targeting NRF2 protein, miR-144, was elevated in the livers of obese insulin-resistant humans and mice, and specific silencing of miR-144 in murine and human LMs was sufficient to restore NRF2 protein expression and the antioxidant response. These results highlight the pathological role of LMs and their therapeutic potential to restore the impaired endogenous antioxidant response in obesity-associated NAFLD.


Subject(s)
Antioxidants , Insulin Resistance , Kupffer Cells , Non-alcoholic Fatty Liver Disease , Animals , Humans , Liver , Mice , MicroRNAs , NF-E2-Related Factor 2 , Obesity
19.
Nutrients ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973116

ABSTRACT

A growing amount of evidence suggests that the downregulation of protein synthesis is an adaptive response during physiological aging, which positively contributes to longevity and can be modulated by nutritional interventions like caloric restriction (CR). The expression of ribosomal RNA (rRNA) is one of the main determinants of translational rate, and epigenetic modifications finely contribute to its regulation. Previous reports suggest that hypermethylation of ribosomal DNA (rDNA) locus occurs with aging, although with some species- and tissue- specificity. In the present study, we experimentally measured DNA methylation of three regions (the promoter, the 5' of the 18S and the 5' of 28S sequences) in the rDNA locus in liver tissues from rats at two, four, 10, and 18 months. We confirm previous findings, showing age-related hypermethylation, and describe, for the first time, that this gain in methylation also occurs in human hepatocytes. Furthermore, we show that age-related hypermethylation is enhanced in livers of rat upon CR at two and 10 months, and that at two months a trend towards the reduction of rRNA expression occurs. Collectively, our results suggest that CR modulates age-related regulation of methylation at the rDNA locus, thus providing an epigenetic readout of the pro-longevity effects of CR.


Subject(s)
Aging/metabolism , Caloric Restriction , DNA Methylation/physiology , Genetic Loci/physiology , RNA, Ribosomal/metabolism , Animals , DNA, Ribosomal/metabolism , Epigenesis, Genetic , Humans , Liver/metabolism , Longevity/physiology , Male , Promoter Regions, Genetic/physiology , Rats
20.
Front Endocrinol (Lausanne) ; 11: 554922, 2020.
Article in English | MEDLINE | ID: mdl-33692750

ABSTRACT

Bile acids (BAs) are detergents essential for intestinal absorption of lipids. Disruption of BA homeostasis can lead to severe liver damage. BA metabolism is therefore under strict regulation by sophisticated feedback mechanisms. The hormone-like protein Fibroblast growth factor 19 (FGF19) is essential for maintaining BA homeostasis by down regulating BA synthesis. Here, the impact of both FGF19 and chenodeoxycholic acid (CDCA) on primary human hepatocytes was investigated and a possible autocrine/paracrine function of FGF19 in regulation of BA synthesis evaluated. Primary human hepatocytes were treated with CDCA, recombinant FGF19 or conditioned medium containing endogenously produced FGF19. RNA sequencing revealed that treatment with CDCA causes deregulation of transcripts involved in BA metabolism, whereas treatment with FGF19 had minor effects. CDCA increased FGF19 mRNA expression within 1 h. We detected secretion of the resulting FGF19 protein into medium, mimicking in vivo observations. Furthermore, medium enriched with endogenously produced FGF19 reduced BA synthesis by down regulating CYP7A1 gene expression. However, following knockdown of FGF19, CDCA still independently decreased BA synthesis, presumably through the regulatory protein small heterodimer partner (SHP). In summary, we show that in primary human hepatocytes CDCA regulates BA synthesis in an FGF19-independent manner.


Subject(s)
Bile Acids and Salts/biosynthesis , Chenodeoxycholic Acid/pharmacology , Fibroblast Growth Factors/physiology , Hepatocytes/drug effects , Adolescent , Adult , Aged , Child , Child, Preschool , Cholesterol 7-alpha-Hydroxylase/genetics , Female , Fibroblast Growth Factors/genetics , Hepatocytes/metabolism , Humans , Infant , Infant, Newborn , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...