Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Neoplasia ; 53: 101003, 2024 07.
Article in English | MEDLINE | ID: mdl-38759377

ABSTRACT

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to various growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT1-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT1 pathway may be a key target in ER stress and dysfunction.


Subject(s)
Endoplasmic Reticulum , MAP Kinase Kinase Kinases , Microtubules , Signal Transduction , Microtubules/metabolism , Endoplasmic Reticulum/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Acetylation , Animals , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Acetyltransferases/metabolism , Acetyltransferases/genetics , Endoplasmic Reticulum Stress , Mice , Microtubule Proteins
2.
Ther Adv Respir Dis ; 17: 17534666231181262, 2023.
Article in English | MEDLINE | ID: mdl-37477094

ABSTRACT

BACKGROUND AND OBJECTIVES: eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel DAMP and TLR4 ligand, is a druggable ARDS therapeutic target with NAMPT promoter SNPs associated with ARDS severity. This study assesses the previously unknown influence of NAMPT promoter SNPs on NAMPT transcription, eNAMPT secretion, and ARDS severity. METHODS AND DESIGN: Human lung endothelial cells (ECs) transfected with NAMPT promoter luciferase reporters harboring SNPs G-1535A, A-1001 C, and C-948A, were exposed to LPS or LPS/18% cyclic stretch (CS) and NAMPT promoter activity, NAMPT protein expression, and secretion assessed. NAMPT genotypes and eNAMPT plasma measurements (Days 0/7) were assessed in two ARDS cohorts (DISCOVERY n = 428; ALVEOLI n = 103). RESULTS: Comparisons of minor allelic frequency (MAF) in both ARDS cohorts with the 1000 Human Genome Project revealed the G-1535A and C-948A SNPs to be significantly associated with ARDS in Blacks compared with controls and trended toward significance in non-Hispanic Whites. LPS-challenged and LPS/18% CS-challenged EC harboring the -1535G wild-type allele exhibited significantly increased NAMPT promoter activity (compared with -1535A) with the -1535G/-948A diplotype exhibiting significantly increased NAMPT promoter activity, NAMPT protein expression, and eNAMPT secretion compared with the -1535A/-948 C diplotype. Highly significant increases in Day 0 eNAMPT plasma values were observed in both DISCOVERY and ALVEOLI ARDS cohorts (compared with healthy controls). Among subjects surviving to Day 7, Day 7 eNAMPT values were significantly increased in Day 28 non-survivors versus survivors. The protective -1535A SNP allele drove -1535A/-1001A and -1535A/-948 C diplotypes that confer significantly reduced ARDS risk (compared with -1535G, -1535G/-1001 C, -1535G/-948A), particularly in Black ARDS subjects. NAMPT SNP comparisons within the two ARDS cohorts did not identify significant association with either APACHE III scores or plasma eNAMPT levels. CONCLUSION: NAMPT SNPs influence promoter activity, eNAMPT protein expression/secretion, plasma eNAMPT levels, and ARDS severity. NAMPT genotypes are a potential tool for stratification in eNAMPT-focused ARDS clinical trials.


Subject(s)
Nicotinamide Phosphoribosyltransferase , Respiratory Distress Syndrome , Humans , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Endothelial Cells/metabolism , Lipopolysaccharides , Cytokines/genetics , Cytokines/metabolism , Lung/metabolism , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/genetics
3.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131821

ABSTRACT

Dynamic changes in the endoplasmic reticulum (ER) morphology are central to maintaining cellular homeostasis. Microtubules (MT) facilitate the continuous remodeling of the ER network into sheets and tubules by coordinating with many ER-shaping protein complexes, although how this process is controlled by extracellular signals remains unknown. Here we report that TAK1, a kinase responsive to numerous growth factors and cytokines including TGF-ß and TNF-α, triggers ER tubulation by activating αTAT1, an MT-acetylating enzyme that enhances ER-sliding. We show that this TAK1/αTAT-dependent ER remodeling promotes cell survival by actively downregulating BOK, an ER membrane-associated proapoptotic effector. While BOK is normally protected from degradation when complexed with IP3R, it is rapidly degraded upon their dissociation during the ER sheets-to-tubules conversion. These findings demonstrate a distinct mechanism of ligand-induced ER remodeling and suggest that the TAK1/αTAT pathway may be a key target in ER stress and dysfunction.

4.
Cancer Med ; 12(11): 12792-12801, 2023 06.
Article in English | MEDLINE | ID: mdl-37081700

ABSTRACT

BACKGROUND: The United States is becoming increasingly diverse, but few molecular studies have assessed the progression of clear cell renal cell carcinoma (ccRCC) in diverse patient populations. This study examined ccRCC molecular variations in non-Hispanic White (NHW) and Hispanic patients and their effect on the association of gene expression with high-grade (Grade 3 or 4) ccRCC and overall mortality. METHODS: A total of 156 patients were included in VHL sequencing and/or TempO-Seq analysis. DESeq2 was used to identify the genes associated with high-grade ccRCC. Logistic regression analysis was performed to assess whether race and ethnicity was associated with high/moderate impact VHL somatic mutations and the ccA/ccB subtype. Cox regression analysis was performed to assess association of molecular subtype and gene expression with overall mortality. RESULTS: NHWs had moderate or high impact mutations in the VHL gene at a higher frequency than Hispanics (40.2% vs. 27.4%), while Hispanics had a higher frequency of the ccA subtype than NHWs (61.9% vs. 45.8%). ccA was more common in patients with BMI≥35 (65.2%) than in those with BMI < 25 (45.0%). There were 11 differentially expressed genes between high- and low-grade tumors. The Haptoglobin (HP) gene was most significantly overexpressed in high- compared to low-grade ccRCC in all samples (p-adj = 1.7 × 10-12 ). When stratified by subtype, the 11 genes were significantly differentially expressed in the ccB subtype, but none of them were significant after adjusting for multiple testing in ccA. Finally, patients with the ccB subtype had a significantly increased risk of overall mortality (HR 4.87; p = 0.01) compared to patients with ccA, and patients with high HP expression and ccB, had a significantly increased risk of mortality compared to those with low HP expression and ccA (HR 6.45, p = 0.04). CONCLUSION: This study reports ccRCC molecular variations in Hispanic patients who were previously underrepresented.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , White , Hispanic or Latino/genetics , Ethnicity
5.
Elife ; 112022 09 12.
Article in English | MEDLINE | ID: mdl-36094159

ABSTRACT

The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wave-like patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.


Subject(s)
Colon , Stem Cells , Cell Proliferation , Homeostasis , Humans , Intestinal Mucosa/metabolism
6.
Front Mol Biosci ; 9: 875102, 2022.
Article in English | MEDLINE | ID: mdl-35847987

ABSTRACT

BLM is sumoylated in response to replication stress. We have studied the role of BLM sumoylation in physiologically normal and replication-stressed conditions by expressing in BLM-deficient cells a BLM with SUMO acceptor-site mutations, which we refer to as SUMO-mutant BLM cells. SUMO-mutant BLM cells exhibited multiple defects in both stressed and unstressed DNA replication conditions, including, in hydroxyurea-treated cells, reduced fork restart and increased fork collapse and, in untreated cells, slower fork velocity and increased fork instability as assayed by track-length asymmetry. We further showed by fluorescence recovery after photobleaching that SUMO-mutant BLM protein was less dynamic than normal BLM and comprised a higher immobile fraction at collapsed replication forks. BLM sumoylation has previously been linked to the recruitment of RAD51 to stressed forks in hydroxyurea-treated cells. An important unresolved question is whether the failure to efficiently recruit RAD51 is the explanation for replication stress in untreated SUMO-mutant BLM cells.

7.
Nat Commun ; 13(1): 1326, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288568

ABSTRACT

Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report ßIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific ßIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, ßIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, ßIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development.


Subject(s)
Spectrin , Vascular Endothelial Growth Factor A , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Mice , Neovascularization, Physiologic , Proteomics , Signal Transduction , Spectrin/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
Br J Cancer ; 126(11): 1595-1603, 2022 06.
Article in English | MEDLINE | ID: mdl-35197584

ABSTRACT

BACKGROUND: Mismatch repair (MMR) deficiency is the hallmark of tumours from Lynch syndrome (LS), sporadic MLH1 hypermethylated and Lynch-like syndrome (LLS), but there is a lack of understanding of the variability in their mutational profiles based on clinical phenotypes. The aim of this study was to perform a molecular characterisation to identify novel features that can impact tumour behaviour and clinical management. METHODS: We tested 105 MMR-deficient colorectal cancer tumours (25 LS, 35 LLS and 45 sporadic) for global exome microsatellite instability, cancer mutational signatures, mutational spectrum and neoepitope load. RESULTS: Fifty-three percent of tumours showed high contribution of MMR-deficient mutational signatures, high level of global exome microsatellite instability, loss of MLH1/PMS2 protein expression and included sporadic tumours. Thirty-one percent of tumours showed weaker features of MMR deficiency, 62% lost MSH2/MSH6 expression and included 60% of LS and 44% of LLS tumours. Remarkably, 9% of all tumours lacked global exome microsatellite instability. Lastly, HLA-B07:02 could be triggering the neoantigen presentation in tumours that show the strongest contribution of MMR-deficient tumours. CONCLUSIONS: Next-generation sequencing approaches allow for a granular molecular characterisation of MMR-deficient tumours, which can be essential to properly diagnose and treat patients with these tumours in the setting of personalised medicine.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Microsatellite Instability , Brain Neoplasms , Colorectal Neoplasms , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair/genetics , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , Mutation , Neoplastic Syndromes, Hereditary
9.
Nutrients ; 13(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34836131

ABSTRACT

Oxylipins derived from arachidonic acid (ARA) have been implicated in the development of colorectal adenomas and colorectal cancer. The primary purpose of this work was to determine the relationship between plasma levels of oxylipins and colorectal adenoma characteristics at study entry, as well as with the development of a new adenoma during follow-up within a Phase III adenoma prevention clinical trial with selenium (Sel). Secondarily, we sought to determine whether the selenium intervention influenced plasma oxylipin levels. Four oxylipins were quantified in stored plasma samples from a subset of Sel study subjects (n = 256) at baseline and at 12-months. There were significantly lower odds of an advanced adenoma at baseline with higher prostaglandin E2 (PGE2), with an OR (95% CI) of 0.55 (0.33-0.92), and with 5-hydroxyeicosatetraenoic acid (5-HETE) ((0.53 (0.33-0.94)); and of a large adenoma with higher PGE2 ((0.52 (0.31-0.87)). In contrast, no associations were observed between any oxylipin and the development of a new adenoma during follow-up. Selenium supplementation was associated with a significantly smaller increase in 5-HETE after 12 months compared to the placebo, though no other results were statistically significant. The ARA-derived oxylipins may have a role in the progression of non-advanced adenoma to advanced, but not with the development of a new adenoma.


Subject(s)
Adenoma/prevention & control , Arachidonic Acid/blood , Colorectal Neoplasms/prevention & control , Oxylipins/blood , Selenium/administration & dosage , Adenoma/blood , Aged , Celecoxib/administration & dosage , Colorectal Neoplasms/blood , Dietary Supplements , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Treatment Outcome
10.
J Nutr ; 151(2): 293-302, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33382417

ABSTRACT

BACKGROUND: Selenium (Se) is a trace element that has been linked to many health conditions. Genome-wide association studies (GWAS) have identified variants for blood and toenail Se levels, but no GWAS has been conducted to date on responses to Se supplementation. OBJECTIVES: A GWAS was performed to identify the single nucleotide polymorphisms (SNPs) associated with changes in Se concentrations after 1 year of supplementation. A GWAS of basal plasma Se concentrations at study entry was conducted to evaluate whether SNPs for Se responses overlap with SNPs for basal Se levels. METHODS: A total of 428 participants aged 40-80 years of European descent from the Selenium and Celecoxib Trial (Sel/Cel Trial) who received daily supplementation with 200 µg of selenized yeast were included for the GWAS of responses to supplementation. Plasma Se concentrations were measured from blood samples collected at the time of recruitment and after 1 year of supplementation. Linear regression analyses were performed to assess the relationship between each SNP and changes in Se concentrations. We further examined whether the identified SNPs overlapped with those related to basal Se concentrations. RESULTS: No SNP was significantly associated with changes in Se concentration at a genome-wide significance level. However, rs56856693, located upstream of the NEK6, was nominally associated with changes in Se concentrations after supplementation (P = 4.41 × 10-7), as were 2 additional SNPs, rs11960388 and rs6887869, located in the dimethylglycine dehydrogenase (DMGDH)/betaine-homocysteine S-methyltransferase (BHMT) region (P = 0.01). Alleles of 2 SNPs in the DMGDH/BHMT region associated with greater increases in Se concentrations after supplementation were also strongly associated with higher basal Se concentrations (P = 8.67 × 10-8). CONCLUSIONS: This first GWAS of responses to Se supplementation in participants of European descent from the Sel/Cel Trial suggests that SNPs in the NEK6 and DMGDH/BHMT regions influence responses to supplementation.


Subject(s)
Dietary Supplements , Genome-Wide Association Study , Genotype , Selenium/blood , Selenium/pharmacology , White People , Adult , Female , Humans , Male , Middle Aged , Selenium/administration & dosage
11.
Genes Chromosomes Cancer ; 59(8): 454-464, 2020 08.
Article in English | MEDLINE | ID: mdl-32293075

ABSTRACT

Despite improvements over the past 20 years, African Americans continue to have the highest incidence and mortality rates of colorectal cancer (CRC) in the United States. While previous studies have found that copy number variations (CNVs) occur at similar frequency in African American and White CRCs, copy-neutral loss of heterozygosity (cnLOH) has not been investigated. In the present study, we used publicly available data from The Cancer Genome Atlas (TCGA) as well as data from an African American CRC cohort, the Chicago Colorectal Cancer Consortium (CCCC), to compare frequencies of CNVs and cnLOH events in CRCs in the two racial groups. Using genotype microarray data, we analyzed large-scale CNV and cnLOH events from 166 microsatellite stable CRCs-31 and 39 African American CRCs from TCGA and the CCCC, respectively, and 96 White CRCs from TCGA. As reported previously, the frequencies of CNVs were similar between African American and White CRCs; however, there was a significantly lower frequency of cnLOH events in African American CRCs compared to White CRCs, even after adjusting for demographic and clinical covariates. Although larger differences for chromosome 18 were observed, a lower frequency of cnLOH events in African American CRCs was observed for nearly all chromosomes. These results suggest that mechanistic differences, including differences in the frequency of cnLOH, could contribute to clinicopathological disparities between African Americans and Whites. Additionally, we observed a previously uncharacterized phenomenon we refer to as small interstitial cnLOH, in which segments of chromosomes from 1 to 5 Mb long were affected by cnLOH.


Subject(s)
Black or African American/genetics , Colorectal Neoplasms/genetics , Loss of Heterozygosity , Aged , Chromosomes, Human, Pair 18/genetics , Colorectal Neoplasms/ethnology , Colorectal Neoplasms/pathology , DNA Copy Number Variations , Female , Humans , Male , Middle Aged
12.
Nat Rev Dis Primers ; 5(1): 64, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537806

ABSTRACT

Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.


Subject(s)
DNA Repair-Deficiency Disorders/diagnosis , DNA Repair-Deficiency Disorders/genetics , Ataxia Telangiectasia/diagnosis , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/physiopathology , Bloom Syndrome/diagnosis , Bloom Syndrome/genetics , Bloom Syndrome/physiopathology , DNA Damage/genetics , DNA Repair-Deficiency Disorders/physiopathology , Fanconi Anemia/diagnosis , Fanconi Anemia/genetics , Fanconi Anemia/physiopathology , Humans , Nijmegen Breakage Syndrome/diagnosis , Nijmegen Breakage Syndrome/genetics , Nijmegen Breakage Syndrome/physiopathology
13.
Methods Mol Biol ; 1999: 75-85, 2019.
Article in English | MEDLINE | ID: mdl-31127570

ABSTRACT

The double-strand break (DSB) is the most cytotoxic type of DNA damage and measurement of DSBs in cells is essential to understand their induction and repair. Pulsed-field gel electrophoresis (PFGE) allows for quantitative measurement of DSBs in a cell population generated by DNA damaging agents. PFGE has the capacity to separate DNA molecules from several hundred base pairs to over six million base pairs. In the method described here, molecules from five hundred thousand to three million base pairs are consolidated into a single band on the gel that is readily analyzed.


Subject(s)
DNA/isolation & purification , Electrophoresis, Gel, Pulsed-Field/methods , Animals , Cells, Cultured , DNA/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , DNA Repair , Gamma Rays/adverse effects , Humans , Intercalating Agents
14.
Fam Cancer ; 18(3): 331-342, 2019 07.
Article in English | MEDLINE | ID: mdl-30989425

ABSTRACT

Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients and determined their tumor's mutational profiles using FFPE DNA. Six hundred and fifty-four consecutive CRC patients were screened for suspected LS using MSI and absence of MLH1 methylation. Suspected LS cases were exome sequenced to identify germline and somatic mutations. Single nucleotide variants were used to characterize mutational signatures. We identified 23 suspected LS cases. Germline sequence analysis of 16 available samples identified five cases with LS mutations and 11 cases without LS mutations, LLS. Most LLS tumors had a combination of somatic MMR gene mutation and loss of heterozygosity. LLS patients were relatively young and had excess first-degree relatives with cancer. Four of the 11 LLS patients had rare likely pathogenic variants in genes that maintain genome integrity. Moreover, tumors from this group had a distinct mutational signature compared to tumors from LLS patients lacking germline mutations in these genes. In summary, more than a third of the LLS patients studied had germline mutations in genes that maintain genome integrity and their tumors had a distinct mutational signature. The possibility of hereditary factors in LLS warrants further studies so counseling can be properly informed.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , Germ-Line Mutation , Adult , Aged , Aged, 80 and over , DNA Methylation , DNA-Binding Proteins/genetics , Female , Heterozygote , Humans , Male , Microsatellite Instability , Middle Aged , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics , Sequence Analysis, DNA
15.
BMJ Open Diabetes Res Care ; 7(1): e000613, 2019.
Article in English | MEDLINE | ID: mdl-30899530

ABSTRACT

Objective: While controversial, observational and randomized clinical trial data implicate the micronutrient selenium (Se) in the development of type 2 diabetes (T2D). The aim of this study was to test the hypothesis that Se supplementation adversely affects pancreatic ß-cell function and insulin sensitivity. Research design and methods: In a subset of 400 individuals participating in a randomized, placebo-controlled trial of Se at 200 µg/day for colorectal adenomatous polyps, fasting plasma glucose and insulin were measured before randomization and within 6 months of completing intervention. Change in the homeostasis model assessment-ß cell function (HOMA2-%ß) and insulin sensitivity (HOMA2-%S) were compared between arms. A subgroup of 175 (79 Se and 96 placebo) participants underwent a modified oral glucose tolerance test (mOGTT) at the end of intervention and change in glucose values was assessed. Results: No statistically significant differences were observed for changes in HOMA2-%ß or HOMA2-%S between those who received Se compared with placebo. After a mean of 2.9 years on study, mean HOMA2-%ß values were 3.1±24.0 and 3.1±29.8 for the Se and placebo groups, respectively (p=0.99). For HOMA2-%S, the values were -0.5±223.2 and 80.9±1530.9 for the Se and placebo groups, respectively (p=1.00). Stratification by sex or age did not reveal any statistically significant effects on insulin sensitivity by treatment group. For mOGTT, mean baseline fasting blood glucose concentrations were significantly higher among participants in the placebo group compared with the Se group (96.6±14.6 and 92.3±12.0, respectively; p=0.04), a trend which remained through the 20 min assessment. Conclusions: These findings do not support a significant adverse effect of daily Se supplementation with 200 µg/day of selenized yeast on ß-cell function or insulin sensitivity as an explanation for previously reported associations between Se and T2D. Further clarification of longer term effects of Se is needed. Clinical trial registry: NIH Clinical Trials.gov number NCT00078897.


Subject(s)
Insulin-Secreting Cells/drug effects , Selenium/adverse effects , Adenoma/drug therapy , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/drug therapy , Dietary Supplements/adverse effects , Female , Humans , Insulin Resistance , Male , Middle Aged , Polyps/drug therapy , Randomized Controlled Trials as Topic , Selenium/pharmacology
16.
PLoS One ; 14(3): e0214282, 2019.
Article in English | MEDLINE | ID: mdl-30913233

ABSTRACT

Firefighters are exposed to carcinogens and have elevated cancer rates. We hypothesized that occupational exposures in firefighters would lead to DNA methylation changes associated with activation of cancer pathways and increased cancer risk. To address this hypothesis, we collected peripheral blood samples from 45 incumbent and 41 new recruit non-smoking male firefighters and analyzed the samples for DNA methylation using an Illumina Methylation EPIC 850k chip. Adjusting for age and ethnicity, we performed: 1) genome-wide differential methylation analysis; 2) genome-wide prediction for firefighter status (incumbent or new recruit) and years of service; and 3) Ingenuity Pathway Analysis (IPA). Four CpGs, including three in the YIPF6, MPST, and PCED1B genes, demonstrated above 1.5-fold statistically significant differential methylation after Bonferroni correction. Genome-wide methylation predicted with high accuracy incumbent and new recruit status as well as years of service among incumbent firefighters. Using IPA, the top pathways with more than 5 gene members annotated from differentially methylated probes included Sirtuin signaling pathway, p53 signaling, and 5' AMP-activated protein kinase (AMPK) signaling. These DNA methylation findings suggest potential cellular mechanisms associated with increased cancer risk in firefighters.


Subject(s)
DNA Methylation , Firefighters , Adult , CpG Islands , Gene Regulatory Networks/genetics , Genome, Human , Humans , Male , Middle Aged , Neoplasms/genetics , Neoplasms/pathology , Non-Smokers , Occupational Exposure , Signal Transduction/genetics
17.
PLoS Genet ; 15(2): e1007942, 2019 02.
Article in English | MEDLINE | ID: mdl-30735491

ABSTRACT

NSMCE2 is an E3 SUMO ligase and a subunit of the SMC5/6 complex that associates with the replication fork and protects against genomic instability. Here, we study the fate of collapsed replication forks generated by prolonged hydroxyurea treatment in human NSMCE2-deficient cells. Double strand breaks accumulate during rescue by converging forks in normal cells but not in NSMCE2-deficient cells. Un-rescued forks persist into mitosis, leading to increased mitotic DNA damage. Excess RAD51 accumulates and persists at collapsed forks in NSMCE2-deficient cells, possibly due to lack of BLM recruitment to stalled forks. Despite failure of BLM to accumulate at stalled forks, NSMCE2-deficient cells exhibit lower levels of hydroxyurea-induced sister chromatid exchange. In cells deficient in both NSMCE2 and BLM, hydroxyurea-induced double strand breaks and sister chromatid exchange resembled levels found in NSCME2-deficient cells. We conclude that the rescue of collapsed forks by converging forks is dependent on NSMCE2.


Subject(s)
DNA Damage , Ligases/metabolism , Mitosis , DNA Breaks, Double-Stranded , DNA Repair , DNA Replication , Epistasis, Genetic , Genomic Instability , HEK293 Cells , HeLa Cells , Humans , Hydroxyurea/pharmacology , Ligases/deficiency , Ligases/genetics , Models, Biological , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , RecQ Helicases/deficiency , RecQ Helicases/genetics , RecQ Helicases/metabolism , Sister Chromatid Exchange/drug effects , Sumoylation
18.
Carcinogenesis ; 39(11): 1331-1341, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30239619

ABSTRACT

African Americans (AAs) have higher incidence and mortality rates of colorectal cancer (CRC) compared with other US populations. They present with more right-sided, microsatellite stable disease and are diagnosed at earlier ages compared with non-Hispanic Whites (NHWs). To gain insight into these trends, we conducted exome sequencing (n = 45), copy number (n = 33) and methylation analysis (n = 11) of microsatellite stable AA CRCs. Results were compared with data from The Cancer Genome Atlas (TCGA). Two of the 45 tumors contained POLE mutations. In the remaining 43 tumors, only 27 (63%) contained loss-of-function mutations in APC compared with 80% of TCGA NHW CRCs. APC-mutation-negative CRCs were associated with an earlier onset of CRC (P = 0.01). They were also associated with lower overall mutation burden, fewer copy number variants and a DNA methylation signature that was distinct from the CpG island methylator phenotype characterized in microsatellite unstable disease. Three of the APC-mutation-negative CRCs had loss-of-function mutations in BCL9L. Mutations in driver genes identified by TCGA exome analysis were less frequent in AA CRC cases than TCGA NHWs. Genes that regulate the WNT signaling pathway, including SOX9, GATA6, TET1, GLIS1 and FAT1, were differentially hypermethylated in APC-mutation-negative CRCs, suggesting a novel mechanism for cancer development in these tumors. In summary, we have identified a subtype of CRC that is associated with younger age of diagnosis, lack of APC mutation, microsatellite and chromosome stability, lower mutation burden and distinctive methylation changes.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Black or African American/genetics , Black or African American/statistics & numerical data , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , DNA Methylation/genetics , Microsatellite Repeats/genetics , Cadherins/genetics , Colorectal Neoplasms/pathology , DNA Copy Number Variations/genetics , DNA-Binding Proteins/genetics , Female , GATA6 Transcription Factor/genetics , Humans , Male , Microsatellite Instability , Middle Aged , Mixed Function Oxygenases/genetics , Proto-Oncogene Proteins/genetics , SOX9 Transcription Factor/genetics , Transcription Factors/genetics , Exome Sequencing , Wnt Signaling Pathway/genetics
19.
PLoS One ; 13(8): e0200916, 2018.
Article in English | MEDLINE | ID: mdl-30161129

ABSTRACT

INTRODUCTION: Pseudogenes are paralogues of functional genes historically viewed as defunct due to either the lack of regulatory elements or the presence of frameshift mutations. Recent evidence, however, suggests that pseudogenes may regulate gene expression, although the functional role of pseudogenes remains largely unknown. We previously reported that MYLKP1, the pseudogene of MYLK that encodes myosin light chain kinase (MLCK), is highly expressed in lung and colon cancer cell lines and tissues but not in normal lung or colon. The MYLKP1 promoter is minimally active in normal bronchial epithelial cells but highly active in lung adenocarcinoma cells. In this study, we further validate MYLKP1 as an oncogene via elucidation of the functional role of MYLKP1 genetic variants in colon cancer risk. METHODS: Proliferation and migration assays were performed in MYLKP1-transfected colon and lung cancer cell lines (H441, A549) and commercially-available normal lung and colon cells. Fourteen MYLKP1 SNPs (MAFs >0.01) residing within the 4 kb MYLKP1 promoter region, the core 1.4 kb of MYLKP1 gene, and a 4 kb enhancer region were selected and genotyped in a colorectal cancer cohort. MYLKP1 SNP influences on activity of MYLKP1 promoter (2kb) was assessed by dual luciferase reporter assay. RESULTS: Cancer cell lines, H441 and A549, exhibited increased MYLKP1 expression, increased MYLKP1 luciferase promoter activity, increased proliferation and migration. Genotyping studies identified two MYLKP1 SNPs (rs12490683; rs12497343) that significantly increase risk of colon cancer in African Americans compared to African American controls. Rs12490683 and rs12497343 further increase MYLKP1 promoter activity compared to the wild type MYLKP1 promoter. CONCLUSION: MYLKP1 is a cancer-promoting pseudogene whose genetic variants differentially enhance cancer risk in African American populations.


Subject(s)
Calcium-Binding Proteins/genetics , Colonic Neoplasms/genetics , Myosin-Light-Chain Kinase/genetics , Pseudogenes , Black or African American/genetics , Calcium-Binding Proteins/metabolism , Case-Control Studies , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Gene Expression , Humans , Myosin-Light-Chain Kinase/metabolism , Oncogenes , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Risk Factors , White People/genetics
20.
PLoS One ; 13(7): e0200462, 2018.
Article in English | MEDLINE | ID: mdl-30001362

ABSTRACT

BACKGROUND: Screening in the average risk population for colorectal cancer (CRC) is expected to reduce the incidence of distant (i.e., metastatic) CRCs at least as much as less advanced CRCs. Indeed, since 2000, during which time colonoscopy became widely used as a screening tool, the overall incidence of CRC has been reduced by 29%. OBJECTIVE: The purpose of the current study was to determine whether the reduction of incidence rates is the same for all stages of disease. METHODS: We evaluated incidence data from the Surveillance, Epidemiology, and End Results (SEER) program from 2000-2014 for Localized, Regional, and Distant disease. Joinpoint models were compared to assess parallelism of trends. Data were stratified by race, age, tumor location, and sex to determine whether these subgroupings could explain overall trends. RESULTS: Inconsistent with the expectations of a successful screening program, the reduction in incidence rates of distant CRCs from 2000-2014 has been slower than the reductions in incidence rates of both regional and localized CRCs. This trend is evident even when the data are stratified by age at diagnosis, sex, race, or tumor location. CONCLUSIONS: The slower decrease in the incidence rate of distant disease is not consistent with a screening effect, that is, CRC screening may not be effective in preventing many distant CRCs. As a consequence, distant CRCs represent an increasing fraction of all CRCs, accounting for 21% of all CRCs in 2014. The analysis indicates that inadequate screening does not explain the slower decrease in incidence of distant CRCs. Consequently, we suggest that a subtype of CRC exists that advances rapidly, evading detection because screening intervals are too long to prevent it. Microsatellite unstable tumors represent a known subtype that advances more rapidly, and we suggest that another rapidly advancing subtype very likely exists that is microsatellite stable.


Subject(s)
Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/prevention & control , Early Detection of Cancer , Aged , Colonoscopy , Colorectal Neoplasms/epidemiology , Female , Humans , Incidence , Male , Middle Aged , Neoplasm Staging , SEER Program , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...