Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Biochem Soc Trans ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023851

ABSTRACT

Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gßγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.

2.
bioRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405732

ABSTRACT

The PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G. PEAK1 promoted CAMK2D/G activation in TNBC cells via a novel feed-forward mechanism involving PEAK1/PLCγ1/Ca 2+ signalling and direct binding via a consensus CAMK2 interaction motif in the PEAK1 N-terminus. In turn, CAMK2 phosphorylated PEAK1 to enhance association with PEAK2, which is critical for PEAK1 oncogenic signalling. To achieve pharmacologic targeting of PEAK1/CAMK2, we repurposed RA306, a second generation CAMK2 inhibitor under pre-clinical development for treatment of cardiovascular disease. RA306 demonstrated on-target activity against CAMK2 in TNBC cells and inhibited PEAK1-enhanced migration and invasion in vitro . Moreover, RA306 significantly attenuated TNBC xenograft growth and blocked metastasis in a manner mirrored by CRISPR-mediated PEAK1 ablation. Overall, these studies establish PEAK1 as a critical cell signalling nexus, identify a novel mechanism for regulation of Ca 2+ signalling and its integration with tyrosine kinase signals, and identify CAMK2 as a therapeutically 'actionable' target downstream of PEAK1.

4.
Nat Struct Mol Biol ; 29(8): 767-773, 2022 08.
Article in English | MEDLINE | ID: mdl-35864164

ABSTRACT

P-Rex (PI(3,4,5)P3-dependent Rac exchanger) guanine nucleotide exchange factors potently activate Rho GTPases. P-Rex guanine nucleotide exchange factors are autoinhibited, synergistically activated by Gßγ and PI(3,4,5)P3 binding and dysregulated in cancer. Here, we use X-ray crystallography, cryogenic electron microscopy and crosslinking mass spectrometry to determine the structural basis of human P-Rex1 autoinhibition. P-Rex1 has a bipartite structure of N- and C-terminal modules connected by a C-terminal four-helix bundle that binds the N-terminal Pleckstrin homology (PH) domain. In the N-terminal module, the Dbl homology (DH) domain catalytic surface is occluded by the compact arrangement of the DH-PH-DEP1 domains. Structural analysis reveals a remarkable conformational transition to release autoinhibition, requiring a 126° opening of the DH domain hinge helix. The off-axis position of Gßγ and PI(3,4,5)P3 binding sites further suggests a counter-rotation of the P-Rex1 halves by 90° facilitates PH domain uncoupling from the four-helix bundle, releasing the autoinhibited DH domain to drive Rho GTPase signaling.


Subject(s)
Guanine Nucleotide Exchange Factors/chemistry , Neoplasms , Binding Sites , Guanine Nucleotide Exchange Factors/metabolism , Humans , Neoplasm Metastasis , Neoplasms/metabolism , Protein Domains , Signal Transduction
5.
Cell Chem Biol ; 29(4): 586-596.e4, 2022 04 21.
Article in English | MEDLINE | ID: mdl-34699747

ABSTRACT

Harnessing the immunomodulatory activity of cytokines is a focus of therapies targeting inflammatory disease. The interleukin (IL)-1 superfamily contains pro-inflammatory and anti-inflammatory members that help orchestrate the immune response in adaptive and innate immunity. Of these molecules, IL-37 has robust anti-inflammatory activity across a range of disease models through inhibition of pro-inflammatory signaling cascades downstream of tumor necrosis factor, IL-1, and toll-like receptor pathways. We find that IL-37 is unstable with a poor pharmacokinetic and manufacturing profile. Here, we present the engineering of IL-37 from an unstable cytokine into an anti-inflammatory molecule with an excellent therapeutic likeness. We overcame these shortcomings through site-directed mutagenesis, the addition of a non-native disulfide bond, and the engineering of IL-37 as an Fc-fusion protein. Our results provide a platform for preclinical testing of IL-37 Fc-fusion proteins. The engineering approaches undertaken herein will apply to the conversion of similar potent yet short-acting cytokines into therapeutics.


Subject(s)
Anti-Inflammatory Agents , Cytokines , Cytokines/metabolism , Immunity, Innate , Immunomodulation , Protein Engineering
6.
Nat Struct Mol Biol ; 28(12): 982-988, 2021 12.
Article in English | MEDLINE | ID: mdl-34887559

ABSTRACT

Neurofibromin (NF1) mutations cause neurofibromatosis type 1 and drive numerous cancers, including breast and brain tumors. NF1 inhibits cellular proliferation through its guanosine triphosphatase-activating protein (GAP) activity against rat sarcoma (RAS). In the present study, cryo-electron microscope studies reveal that the human ~640-kDa NF1 homodimer features a gigantic 30 × 10 nm array of α-helices that form a core lemniscate-shaped scaffold. Three-dimensional variability analysis captured the catalytic GAP-related domain and lipid-binding SEC-PH domains positioned against the core scaffold in a closed, autoinhibited conformation. We postulate that interaction with the plasma membrane may release the closed conformation to promote RAS inactivation. Our structural data further allow us to map the location of disease-associated NF1 variants and provide a long-sought-after structural explanation for the extreme susceptibility of the molecule to loss-of-function mutations. Collectively these findings present potential new routes for therapeutic modulation of the RAS pathway.


Subject(s)
GTPase-Activating Proteins/metabolism , Neurofibromatosis 1/genetics , Neurofibromin 1/metabolism , ras Proteins/metabolism , Cell Membrane/metabolism , Cell Proliferation/genetics , Cryoelectron Microscopy , Humans , Loss of Function Mutation/genetics , Neurofibromatosis 1/pathology , Neurofibromin 1/genetics , Protein Conformation
7.
Nat Commun ; 12(1): 3140, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035258

ABSTRACT

INPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3ß lysosomal degradation and activation of Wnt/ß-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/ß-catenin therapies.


Subject(s)
Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Carcinogenesis/drug effects , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Class I Phosphatidylinositol 3-Kinases/genetics , Endosomes/metabolism , Female , Gene Expression Profiling , Humans , Lysosomes/metabolism , Mice , Mutation , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Proteolysis/drug effects , Proteomics , Thiazoles/pharmacology , Thiazoles/therapeutic use , Tissue Array Analysis , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
8.
Sci Signal ; 14(681)2021 05 04.
Article in English | MEDLINE | ID: mdl-33947796

ABSTRACT

The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P3 to PI(4,5)P2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gßγ subunits downstream of G protein-coupled receptor signaling and by PI(3,4,5)P3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gßγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.


Subject(s)
Guanine Nucleotide Exchange Factors , Neoplasms , PTEN Phosphohydrolase , rac1 GTP-Binding Protein , Guanine Nucleotide Exchange Factors/metabolism , Humans , Mutation , Neoplasms/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases , Signal Transduction , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
9.
J Biol Chem ; 296: 100671, 2021.
Article in English | MEDLINE | ID: mdl-33864814

ABSTRACT

The SAGA-like complex SLIK is a modified version of the Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex. SLIK is formed through C-terminal truncation of the Spt7 SAGA subunit, causing loss of Spt8, one of the subunits that interacts with the TATA-binding protein (TBP). SLIK and SAGA are both coactivators of RNA polymerase II transcription in yeast, and both SAGA and SLIK perform chromatin modifications. The two complexes have been speculated to uniquely contribute to transcriptional regulation, but their respective contributions are not clear. To investigate, we assayed the chromatin modifying functions of SAGA and SLIK, revealing identical kinetics on minimal substrates in vitro. We also examined the binding of SAGA and SLIK to TBP and concluded that interestingly, both protein complexes have similar affinity for TBP. Additionally, despite the loss of Spt8 and C-terminus of Spt7 in SLIK, TBP prebound to SLIK is not released in the presence of TATA-box DNA, just like TBP prebound to SAGA. Furthermore, we determined a low-resolution cryo-EM structure of SLIK, revealing a modular architecture identical to SAGA. Finally, we performed a comprehensive study of DNA-binding properties of both coactivators. Purified SAGA and SLIK both associate with ssDNA and dsDNA with high affinity (KD = 10-17 nM), and the binding is sequence-independent. In conclusion, our study shows that the cleavage of Spt7 and the absence of the Spt8 subunit in SLIK neither drive any major conformational differences in its structure compared with SAGA, nor significantly affect HAT, DUB, or DNA-binding activities in vitro.


Subject(s)
Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Trans-Activators/metabolism , Transcription, Genetic , Protein Binding , Protein Conformation , Protein Subunits , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics
10.
Nat Commun ; 11(1): 5794, 2020 11 13.
Article in English | MEDLINE | ID: mdl-33188181

ABSTRACT

Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46-RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies.


Subject(s)
Enterocolitis, Necrotizing/drug therapy , Enterocolitis, Necrotizing/immunology , Adaptive Immunity , Animals , Animals, Newborn , Biomarkers/metabolism , Enterocolitis, Necrotizing/blood , Enterocolitis, Necrotizing/pathology , Homeostasis , Humans , Immunity, Innate , Infant, Newborn , Inflammation Mediators/metabolism , Interleukin-1 , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Toll-Like Receptors/metabolism
11.
Cells ; 9(1)2020 01 10.
Article in English | MEDLINE | ID: mdl-31936823

ABSTRACT

Interleukin (IL)-37 is a member of the IL-1 family of cytokines. Although its broad anti-inflammatory properties are well described, the effects of IL-37 on inflammasome function remain poorly understood. Performing gene expression analyses, ASC oligomerization/speck assays and caspase-1 assays in bone marrow-derived macrophages (BMDM), and employing an in vivo endotoxemia model, we studied how IL-37 affects the expression and maturation of IL-1ß and IL-18, inflammasome activation, and pyroptosis in detail. IL-37 inhibited IL-1ß production by NLRP3 and AIM2 inflammasomes, and IL-18 production by the NLRP3 inflammasome. This inhibition was partially attributable to effects on gene expression: whereas IL-37 did not affect lipopolysaccharide (LPS)-induced mRNA expression of Il18 or inflammasome components, IL-37-transgenic BMDM displayed an up to 83% inhibition of baseline and LPS-stimulated Il1b compared to their wild-type counterparts. Importantly, we observed that IL-37 suppresses nigericin- and silica-induced ASC oligomerization/speck formation (a step in inflammasome activation and subsequent caspase-1 activation), and pyroptosis (-50%). In mice subjected to endotoxemia, IL-37 inhibited plasma IL-1ß (-78% compared to wild-type animals) and IL-18 (-61%). Thus, our study adds suppression of inflammasome activity to the portfolio of anti-inflammatory pathways employed by IL-37, highlighting this cytokine as a potential tool for treating inflammasome-driven diseases.


Subject(s)
Inflammasomes/metabolism , Interleukin-1/metabolism , Interleukins/metabolism , Animals , Cells, Cultured , Interleukin-1/analysis , Interleukins/analysis , Mice , Mice, Inbred C57BL , Mice, Transgenic
12.
J Biol Chem ; 294(44): 16198-16213, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31515267

ABSTRACT

Ligand-dependent differences in the regulation and internalization of the µ-opioid receptor (MOR) have been linked to the severity of adverse effects that limit opiate use in pain management. MOR activation by morphine or [d-Ala2,N-MePhe4, Gly-ol]enkephalin (DAMGO) causes differences in spatiotemporal signaling dependent on MOR distribution at the plasma membrane. Morphine stimulation of MOR activates a Gαi/o-Gßγ-protein kinase C (PKC) α phosphorylation pathway that limits MOR distribution and is associated with a sustained increase in cytosolic extracellular signal-regulated kinase (ERK) activity. In contrast, DAMGO causes a redistribution of the MOR at the plasma membrane (before receptor internalization) that facilitates transient activation of cytosolic and nuclear ERK. Here, we used proximity biotinylation proteomics to dissect the different protein-interaction networks that underlie the spatiotemporal signaling of morphine and DAMGO. We found that DAMGO, but not morphine, activates Ras-related C3 botulinum toxin substrate 1 (Rac1). Both Rac1 and nuclear ERK activity depended on the scaffolding proteins IQ motif-containing GTPase-activating protein-1 (IQGAP1) and Crk-like (CRKL) protein. In contrast, morphine increased the proximity of the MOR to desmosomal proteins, which form specialized and highly-ordered membrane domains. Knockdown of two desmosomal proteins, junction plakoglobin or desmocolin-1, switched the morphine spatiotemporal signaling profile to mimic that of DAMGO, resulting in a transient increase in nuclear ERK activity. The identification of the MOR-interaction networks that control differential spatiotemporal signaling reported here is an important step toward understanding how signal compartmentalization contributes to opioid-induced responses, including anti-nociception and the development of tolerance and dependence.


Subject(s)
Analgesics, Opioid/metabolism , Receptors, Opioid, mu/metabolism , rac1 GTP-Binding Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Analgesics, Opioid/pharmacology , Animals , Cell Membrane/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , HEK293 Cells , Humans , Ligands , MAP Kinase Signaling System/physiology , Morphine/metabolism , Morphine/pharmacology , Phosphorylation , Protein Interaction Mapping/methods , Protein Interaction Maps , Receptors, Opioid, mu/genetics , Signal Transduction/physiology , rac1 GTP-Binding Protein/physiology , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/physiology
13.
Sci Signal ; 11(551)2018 10 09.
Article in English | MEDLINE | ID: mdl-30301787

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of cell surface signaling proteins, participate in nearly all physiological processes, and are the targets of 30% of marketed drugs. Typically, nanomolar to micromolar concentrations of ligand are used to activate GPCRs in experimental systems. We detected GPCR responses to a wide range of ligand concentrations, from attomolar to millimolar, by measuring GPCR-stimulated production of cyclic adenosine monophosphate (cAMP) with high spatial and temporal resolution. Mathematical modeling showed that femtomolar concentrations of ligand activated, on average, 40% of the cells in a population provided that a cell was activated by one to two binding events. Furthermore, activation of the endogenous ß2-adrenergic receptor (ß2AR) and muscarinic acetylcholine M3 receptor (M3R) by femtomolar concentrations of ligand in cell lines and human cardiac fibroblasts caused sustained increases in nuclear translocation of extracellular signal-regulated kinase (ERK) and cytosolic protein kinase C (PKC) activity, respectively. These responses were spatially and temporally distinct from those that occurred in response to higher concentrations of ligand and resulted in a distinct cellular proteomic profile. This highly sensitive signaling depended on the GPCRs forming preassembled, higher-order signaling complexes at the plasma membrane. Recognizing that GPCRs respond to ultralow concentrations of neurotransmitters and hormones challenges established paradigms of drug action and provides a previously unappreciated aspect of GPCR activation that is quite distinct from that typically observed with higher ligand concentrations.


Subject(s)
Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Muscarinic/metabolism , Signal Transduction , Animals , Bayes Theorem , Binding Sites , Biosensing Techniques , CHO Cells , Cell Membrane/metabolism , Cricetulus , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Ligands , Mitogen-Activated Protein Kinases/metabolism , Models, Theoretical , Phosphorylation , Protein Binding , Proteomics
14.
Sci Immunol ; 2(8)2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28783685

ABSTRACT

Dysregulation of the inflammatory response underlies numerous diseases. Although most interleukin-1 family cytokines are proinflammatory, human interleukin-37 (IL-37) is a powerful, broad-spectrum inhibitor of inflammation and immunity. We determined the crystal structure of IL-37 to establish the anti-inflammatory mechanism of this key cytokine in view of developing IL-37-based therapies. We found that two ß-trefoil fold IL-37 molecules form a head-to-head dimer that is stable in solution. IL-37 variants mutated to convert the cytokine into an obligate monomer were up to 13-fold more effective than the dimer in suppressing proinflammatory events both in primary human blood cells and in vivo in murine endotoxic shock. Therapeutic exploitation of the powerful anti-inflammatory properties of monomeric IL-37 may prove beneficial in treating a wide range of inflammatory and autoimmune disorders.

15.
Biochem Soc Trans ; 45(4): 963-77, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28710285

ABSTRACT

Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger (P-Rex) proteins are RacGEFs that are synergistically activated by phosphatidylinositol 3,4,5-trisphosphate and Gßγ subunits of G-protein-coupled receptors. P-Rex1 and P-Rex2 share similar amino acid sequence homology, domain structure, and catalytic function. Recent evidence suggests that both P-Rex proteins may play oncogenic roles in human cancers. P-Rex1 and P-Rex2 are altered predominantly via overexpression and mutation, respectively, in various cancer types, including breast cancer, prostate cancer, and melanoma. This review compares the similarities and differences between P-Rex1 and P-Rex2 functions in human cancers in terms of cellular effects and signalling mechanisms. Emerging clinical data predict that changes in expression or mutation of P-Rex1 and P-Rex2 may lead to changes in tumour outcome, particularly in breast cancer and melanoma.


Subject(s)
Carcinogenesis , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/metabolism , Models, Molecular , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Animals , Guanine Nucleotide Exchange Factors/agonists , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Humans , Mutation , Neoplasm Proteins/agonists , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasms/genetics , Phosphatidylinositol Phosphates/metabolism , Protein Interaction Domains and Motifs , Protein Subunits/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
16.
J Mol Biol ; 429(9): 1289-1304, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28342736

ABSTRACT

The misfolding of proteins to form amyloid is a key pathological feature of several progressive, and currently incurable, diseases. A mechanistic understanding of the pathway from soluble, native protein to insoluble amyloid is crucial for therapeutic design, and recent efforts have helped to elucidate the key molecular events that trigger protein misfolding. Generally, either global or local structural perturbations occur early in amyloidogenesis to expose aggregation-prone regions of the protein that can then self-associate to form toxic oligomers. Surprisingly, these initiating structural changes are often caused or influenced by protein regions distal to the classically amyloidogenic sequences. Understanding the importance of these distal regions in the pathogenic process has highlighted many remaining knowledge gaps regarding the precise molecular events that occur in classic aggregation pathways. In this review, we discuss how these distal regions can influence aggregation in disease and the recent technical and conceptual advances that have allowed this insight.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Protein Aggregation, Pathological , Protein Folding
17.
Cell Rep ; 18(13): 3105-3116, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28355563

ABSTRACT

Malaria sporozoites are deposited into the skin by mosquitoes and infect hepatocytes. The molecular basis of how Plasmodium falciparum sporozoites migrate through host cells is poorly understood, and direct evidence of its importance in vivo is lacking. Here, we generated traversal-deficient sporozoites by genetic disruption of sporozoite microneme protein essential for cell traversal (PfSPECT) or perforin-like protein 1 (PfPLP1). Loss of either gene did not affect P. falciparum growth in erythrocytes, in contrast with a previous report that PfPLP1 is essential for merozoite egress. However, although traversal-deficient sporozoites could invade hepatocytes in vitro, they could not establish normal liver infection in humanized mice. This is in contrast with NF54 sporozoites, which infected the humanized mice and developed into exoerythrocytic forms. This study demonstrates that SPECT and perforin-like protein 1 (PLP1) are critical for transcellular migration by P. falciparum sporozoites and demonstrates the importance of cell traversal for liver infection by this human pathogen.


Subject(s)
Cell Movement , Liver/pathology , Liver/parasitology , Malaria, Falciparum/pathology , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Animals , Hepatocytes/parasitology , Hepatocytes/pathology , Humans , Mice, SCID , Mutation/genetics , Parasites/metabolism , Protozoan Proteins/metabolism , Sporozoites/metabolism
18.
Biochem Soc Trans ; 44(2): 562-7, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27068970

ABSTRACT

With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs.


Subject(s)
Cell Compartmentation , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Humans
19.
Proc Natl Acad Sci U S A ; 112(50): 15360-5, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26627714

ABSTRACT

The lethal factor in stonefish venom is stonustoxin (SNTX), a heterodimeric cytolytic protein that induces cardiovascular collapse in humans and native predators. Here, using X-ray crystallography, we make the unexpected finding that SNTX is a pore-forming member of an ancient branch of the Membrane Attack Complex-Perforin/Cholesterol-Dependent Cytolysin (MACPF/CDC) superfamily. SNTX comprises two homologous subunits (α and ß), each of which comprises an N-terminal pore-forming MACPF/CDC domain, a central focal adhesion-targeting domain, a thioredoxin domain, and a C-terminal tripartite motif family-like PRY SPla and the RYanodine Receptor immune recognition domain. Crucially, the structure reveals that the two MACPF domains are in complex with one another and arranged into a stable early prepore-like assembly. These data provide long sought after near-atomic resolution insights into how MACPF/CDC proteins assemble into prepores on the surface of membranes. Furthermore, our analyses reveal that SNTX-like MACPF/CDCs are distributed throughout eukaryotic life and play a broader, possibly immune-related function outside venom.


Subject(s)
Fish Venoms/chemistry , Perforin/chemistry , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Cholesterol/chemistry , Complement Membrane Attack Complex/chemistry , Crystallography, X-Ray , Microscopy, Electron, Transmission , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/chemistry , Solubility , Structural Homology, Protein
20.
Methods Mol Biol ; 1335: 131-61, 2015.
Article in English | MEDLINE | ID: mdl-26260599

ABSTRACT

Förster resonance energy transfer (FRET) biosensors represent invaluable tools to detect the spatiotemporal context of second messenger production and intracellular signaling that cannot be attained using traditional methods. Here, we describe a detailed protocol for the use of high content imaging in combination with FRET biosensors to assess second messenger production and intracellular signaling in a time-effective manner. We use four different FRET biosensors to measure cAMP levels, kinase (ERK and PKC), and GTPase activity. Importantly, we provide the protocols to express and measure these sensors in a variety of model cell lines and primary dorsal root ganglia neurons.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Intracellular Space/metabolism , Molecular Imaging/methods , Signal Transduction , Cell Culture Techniques , Female , Ganglia, Spinal/cytology , HEK293 Cells , Humans , Image Processing, Computer-Assisted , MCF-7 Cells , Male , Neurons/cytology , Neurons/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL