Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 3225, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607434

ABSTRACT

A method for capturing gait signatures in neurological conditions that allows comparison of human gait with animal models would be of great value in translational research. However, the velocity dependence of gait parameters and differences between quadruped and biped gait have made this comparison challenging. Here we present an approach that accounts for changes in velocity during walking and allows for translation across species. In mice, we represented spatial and temporal gait parameters as a function of velocity and established regression models that reproducibly capture the signatures of these relationships during walking. In experimental parkinsonism models, regression curves representing these relationships shifted from baseline, implicating changes in gait signatures, but with marked differences between models. Gait parameters in healthy human subjects followed similar strict velocity dependent relationships which were altered in Parkinson's patients in ways that resemble some but not all mouse models. This novel approach is suitable to quantify qualitative walking abnormalities related to CNS circuit dysfunction across species, identify appropriate animal models, and it provides important translational opportunities.


Subject(s)
Disease Models, Animal , Gait Disorders, Neurologic/physiopathology , Gait/physiology , Parkinson Disease/physiopathology , Animals , Central Nervous System/physiopathology , Humans , Mice, Inbred C57BL , Translational Research, Biomedical/methods , Walking/physiology
2.
Sleep ; 39(5): 1059-62, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26951397

ABSTRACT

STUDY OBJECTIVES: To examine the integrity of sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO) in postmortem brains of narcolepsy type 1 patients. METHODS: Postmortem examination of five narcolepsy and eight control brains. RESULTS: VLPO galanin neuron count did not differ between narcolepsy patients (11,151 ± 3,656) and controls (13,526 ± 9,544). CONCLUSIONS: A normal number of galanin-immunoreactive VLPO neurons in narcolepsy type 1 brains at autopsy suggests that VLPO cell loss is an unlikely explanation for the sleep fragmentation that often accompanies the disease.


Subject(s)
Galanin/metabolism , Narcolepsy/pathology , Narcolepsy/physiopathology , Neurons/metabolism , Preoptic Area/cytology , Sleep Deprivation/pathology , Sleep Deprivation/physiopathology , Aged , Autopsy , Case-Control Studies , Female , Humans , Male , Narcolepsy/complications , Preoptic Area/metabolism , Sleep Deprivation/etiology
3.
Brain ; 137(Pt 10): 2847-61, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25142380

ABSTRACT

Fragmented sleep is a common and troubling symptom in ageing and Alzheimer's disease; however, its neurobiological basis in many patients is unknown. In rodents, lesions of the hypothalamic ventrolateral preoptic nucleus cause fragmented sleep. We previously proposed that the intermediate nucleus in the human hypothalamus, which has a similar location and neurotransmitter profile, is the homologue of the ventrolateral preoptic nucleus, but physiological data in humans were lacking. We hypothesized that if the intermediate nucleus is important for human sleep, then intermediate nucleus cell loss may contribute to fragmentation and loss of sleep in ageing and Alzheimer's disease. We studied 45 older adults (mean age at death 89.2 years; 71% female; 12 with Alzheimer's disease) from the Rush Memory and Aging Project, a community-based study of ageing and dementia, who had at least 1 week of wrist actigraphy proximate to death. Upon death a median of 15.5 months later, we used immunohistochemistry and stereology to quantify the number of galanin-immunoreactive intermediate nucleus neurons in each individual, and related this to ante-mortem sleep fragmentation. Individuals with Alzheimer's disease had fewer galaninergic intermediate nucleus neurons than those without (estimate -2872, standard error = 829, P = 0.001). Individuals with more galanin-immunoreactive intermediate nucleus neurons had less fragmented sleep, after adjusting for age and sex, and this association was strongest in those for whom the lag between actigraphy and death was <1 year (estimate -0.0013, standard error = 0.0005, P = 0.023). This association did not differ between individuals with and without Alzheimer's disease, and similar associations were not seen for two other cell populations near the intermediate nucleus. These data are consistent with the intermediate nucleus being the human homologue of the ventrolateral preoptic nucleus. Moreover, they demonstrate that a paucity of galanin-immunoreactive intermediate nucleus neurons is accompanied by sleep fragmentation in older adults with and without Alzheimer's disease.


Subject(s)
Alzheimer Disease/pathology , Neurons/pathology , Preoptic Area/pathology , Sleep Wake Disorders/pathology , Sleep/physiology , Actigraphy , Aged, 80 and over , Aging/physiology , Alzheimer Disease/physiopathology , Cell Count , Cohort Studies , Data Interpretation, Statistical , Female , Galanin/metabolism , Humans , Immunohistochemistry , Male , Preoptic Area/physiopathology , Rest/physiology , Sleep Deprivation/pathology , Sleep Deprivation/physiopathology , Sleep Wake Disorders/physiopathology , Suprachiasmatic Nucleus/growth & development , Suprachiasmatic Nucleus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...