Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Thromb Haemost ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38460838

ABSTRACT

BACKGROUND: Until recently, the treatment of hemophilia A relied on factor (F)VIII replacement. However, up to one-third of patients with severe hemophilia A develop neutralizing alloantibodies that render replacement therapies ineffective. The development of emicizumab, a bispecific antibody that partially mimics FVIIIa, has revolutionized the treatment of these patients. However, the use of an activated prothrombin complex concentrate [FEIBA (Takeda)] to treat breakthrough bleeding in patients on emicizumab has been associated with thrombotic complications including a unique microangiopathy. OBJECTIVES: We hypothesized that the thrombotic complications observed with the combination of emicizumab and FEIBA might be due to excessive expression of procoagulant activity on the surface of endothelial cells. METHODS: We examined the ability of emicizumab to promote FX activation on endothelial cells using 2 cell culture models. RESULTS: We found that endothelial cells readily support emicizumab-mediated activation of FX by FIXa. The level of FXa generation depends on the concentration of available FIXa. The addition of FEIBA to emicizumab increased FXa generation in a dose-dependent manner on endothelial cells in both models. The rate of FXa generation was further enhanced by endothelial cell activation. However, unlike emicizumab, we found limited FXa generation in the presence of FVIII(a), which followed a significant lag time and was not dependent on FIXa concentration under these conditions. CONCLUSION: Emicizumab promotes FXa generation on the surface of endothelial cells, which is markedly enhanced in the presence of FEIBA. These findings demonstrate a potential mechanism for the thrombotic complications seen with the combined use of emicizumab and FEIBA.

2.
Plant Cell Environ ; 46(9): 2694-2710, 2023 09.
Article in English | MEDLINE | ID: mdl-37219338

ABSTRACT

Measurements of oxygen isotope enrichment of leaf water above source water (Δ18 OLW ) can improve our understanding of the interaction between leaf anatomy and physiology on leaf water transport. Models have been developed to predict Δ18 OLW such as the string-of-lakes model, which describes the mixing of leaf water pools, and the Péclet effect model, which incorporates transpiration rate and the mixing length between unenriched xylem and enriched mesophyll water in the mesophyll (Lm ) or veins (Lv ). Here we compare measurements and models of Δ18 OLW on two cell wall composition mutants grown under two light intensities and relative humidities to evaluate cell wall properties on leaf water transport. In maize (Zea mays), the compromised ultrastructure of the suberin lamellae in the bundle sheath of the ALIPHATIC SUBERIN FERULOYL TRANSFERASE mutant (Zmasft) reduced barriers to apoplastic water movement, resulting in higher E and, potentially, Lv and, consequently, lower Δ18 OLW . The difference in Δ18 OLW in cellulose synthase-like F6 (CslF6) mutants and wild-type of rice (Oryza sativa) grown under two light intensities co-varied with stomatal density. These results show that cell wall composition and stomatal density influence Δ18 OLW and that stable isotopes can facilitate the development of a physiologically and anatomically explicit water transport model.


Subject(s)
Oryza , Water , Oxygen Isotopes/analysis , Water/analysis , Plant Leaves/physiology , Zea mays , Light , Oxygen
4.
Sci Total Environ ; 864: 160992, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36535470

ABSTRACT

Understanding the relationship between water and production within and across agroecosystems is essential for addressing several agricultural challenges of the 21st century: providing food, fuel, and fiber to a growing human population, reducing the environmental impacts of agricultural production, and adapting food systems to climate change. Of all human activities, agriculture has the highest demand for water globally. Therefore, increasing water use efficiency (WUE), or producing 'more crop per drop', has been a long-term goal of agricultural management, engineering, and crop breeding. WUE is a widely used term applied across a diverse array of spatial scales, spanning from the leaf to the globe, and over temporal scales ranging from seconds to months to years. The measurement, interpretation, and complexity of WUE varies enormously across these spatial and temporal scales, challenging comparisons within and across diverse agroecosystems. The goals of this review are to evaluate common indicators of WUE in agricultural production and assess tradeoffs when applying these indicators within and across agroecosystems amidst a changing climate. We examine three questions: (1) what are the uses and limitations of common WUE indicators, (2) how can WUE indicators be applied within and across agroecosystems, and (3) how can WUE indicators help adapt agriculture to climate change? Addressing these agricultural challenges will require land managers, producers, policy makers, researchers, and consumers to evaluate costs and benefits of practices and innovations of water use in agricultural production. Clearly defining and interpreting WUE in the most scale-appropriate way is crucial for advancing agroecosystem sustainability.

5.
Blood ; 140(13): 1453-1455, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36173660
6.
Sci Adv ; 8(26): eabm7212, 2022 07.
Article in English | MEDLINE | ID: mdl-35776787

ABSTRACT

In this study, we experimentally measure the frequency-dependent interactions between a gefitinib-resistant non-small cell lung cancer population and its sensitive ancestor via the evolutionary game assay. We show that cost of resistance is insufficient to accurately predict competitive exclusion and that frequency-dependent growth rate measurements are required. Using frequency-dependent growth rate data, we then show that gefitinib treatment results in competitive exclusion of the ancestor, while the absence of treatment results in a likely, but not guaranteed, exclusion of the resistant strain. Then, using simulations, we demonstrate that incorporating ecological growth effects can influence the predicted extinction time. In addition, we show that higher drug concentrations may not lead to the optimal reduction in tumor burden. Together, these results highlight the potential importance of frequency-dependent growth rate data for understanding competing populations, both in the laboratory and as we translate adaptive therapy regimens to the clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Biological Evolution , Carcinoma, Non-Small-Cell Lung/drug therapy , Gefitinib , Humans , Lung Neoplasms/drug therapy
7.
Hematology Am Soc Hematol Educ Program ; 2021(1): 219-225, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34889356

ABSTRACT

Hemophilia A (HA) and B are inherited bleeding disorders caused by a deficiency of factor VIII or factor IX, respectively. The current standard of care is the administration of recombinant or purified factor. However, this treatment strategy still results in a high economic and personal burden to patients, which is further exacerbated by the development of inhibitors-alloantibodies to factor. The treatment landscape is changing, with nonfactor therapeutics playing an increasing role in what we consider to be the standard of care. Emicizumab, a bispecific antibody that mimics the function of factor VIIIa, is the first such nonfactor therapy to gain US Food and Drug Administration approval and is rapidly changing the paradigm for HA treatment. Other therapies on the horizon seek to target anticoagulant proteins in the coagulation cascade, thus "rebalancing" a hemorrhagic tendency by introducing a thrombotic tendency. This intricate hemostatic balancing act promises great things for patients in need of more treatment options, but are these other therapies going to replace factor therapy? In light of the many challenges facing these therapies, should they be viewed as a replacement of our current standard of care? This review discusses the background, rationale, and potential of nonfactor therapies as well as the anticipated pitfalls and limitations. This is done in the context of a review of our current understanding of the many aspects of the coagulation system.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Hemophilia A/drug therapy , Hemophilia B/drug therapy , Blood Coagulation/drug effects , Child , Hemophilia A/blood , Hemophilia A/complications , Hemophilia B/blood , Hemophilia B/complications , Hemorrhage/blood , Hemorrhage/etiology , Hemorrhage/prevention & control , Humans , Male
8.
Lancet Oncol ; 22(9): 1221-1229, 2021 09.
Article in English | MEDLINE | ID: mdl-34363761

ABSTRACT

BACKGROUND: Despite advances in cancer genomics, radiotherapy is still prescribed on the basis of an empirical one-size-fits-all paradigm. Previously, we proposed a novel algorithm using the genomic-adjusted radiation dose (GARD) model to personalise prescription of radiation dose on the basis of the biological effect of a given physical dose of radiation, calculated using individual tumour genomics. We hypothesise that GARD will reveal interpatient heterogeneity associated with opportunities to improve outcomes compared with physical dose of radiotherapy alone. We aimed to test this hypothesis and investigate the GARD-based radiotherapy dosing paradigm. METHODS: We did a pooled, pan-cancer analysis of 11 previously published clinical cohorts of unique patients with seven different types of cancer, which are all available cohorts with the data required to calculate GARD, together with clinical outcome. The included cancers were breast cancer, head and neck cancer, non-small-cell lung cancer, pancreatic cancer, endometrial cancer, melanoma, and glioma. Our dataset comprised 1615 unique patients, of whom 1298 (982 with radiotherapy, 316 without radiotherapy) were assessed for time to first recurrence and 677 patients (424 with radiotherapy and 253 without radiotherapy) were assessed for overall survival. We analysed two clinical outcomes of interest: time to first recurrence and overall survival. We used Cox regression, stratified by cohort, to test the association between GARD and outcome with separate models using dose of radiation and sham-GARD (ie, patients treated without radiotherapy, but modelled as having a standard-of-care dose of radiotherapy) for comparison. We did interaction tests between GARD and treatment (with or without radiotherapy) using the Wald statistic. FINDINGS: Pooled analysis of all available data showed that GARD as a continuous variable is associated with time to first recurrence (hazard ratio [HR] 0·98 [95% CI 0·97-0·99]; p=0·0017) and overall survival (0·97 [0·95-0·99]; p=0·0007). The interaction test showed the effect of GARD on overall survival depends on whether or not that patient received radiotherapy (Wald statistic p=0·011). The interaction test for GARD and radiotherapy was not significant for time to first recurrence (Wald statistic p=0·22). The HR for physical dose of radiation was 0·99 (95% CI 0·97-1·01; p=0·53) for time to first recurrence and 1·00 (0·96-1·04; p=0·95) for overall survival. The HR for sham-GARD was 1·00 (0·97-1·03; p=1·00) for time to first recurrence and 1·00 (0·98-1·02; p=0·87) for overall survival. INTERPRETATION: The biological effect of radiotherapy, as quantified by GARD, is significantly associated with time to first recurrence and overall survival for patients with cancer treated with radiation. It is predictive of radiotherapy benefit, and physical dose of radiation is not. We propose integration of genomics into radiation dosing decisions, using a GARD-based framework, as the new paradigm for personalising radiotherapy prescription dose. FUNDING: None. VIDEO ABSTRACT.


Subject(s)
Neoplasms/radiotherapy , Radiation Genomics/methods , Radiotherapy Dosage , Databases, Factual , Humans , Neoplasms/genetics , Neoplasms/mortality , Precision Medicine , Recurrence , Survival Rate
12.
Blood Adv ; 4(24): 6240-6249, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33351122

ABSTRACT

Acquired hemophilia A (AHA) is a rare bleeding disorder in which acquired autoantibodies to endogenous factor VIII (FVIII) decrease FVIII activity and lead to a bleeding phenotype. A substantial majority of individuals who develop AHA present with severe bleeding. Effective treatment requires both immunosuppressive therapy and prompt hemostatic treatment. Bleeding is commonly treated with bypassing agents (BPAs) such as recombinant activated FVII (rFVIIa) or activated prothrombin complex concentrates Disadvantages to BPAs include the inability to monitor response with standard laboratory assays, inconsistent hemostatic efficacy, and thrombosis. Recombinant porcine FVIII (rpFVIII: Obizur, Baxter, Deerfield, IL) was approved by the US Food and Drug Administration (FDA) for bleed treatment in AHA in 2014, and has the advantage of laboratory monitoring of FVIII activity levels and known hemostatic efficacy in the presence of anti-human FVIII inhibitors and after failure of BPAs. Using an algorithm-based approach, rpFVIII has been used to successfully treat 18 patients with AHA at our center with substantially lower doses than the current FDA-recommended dosing. Additionally, data from our cohort show that the preexposure anti-porcine Bethesda titer does not reliably predict the clinical response to rpFVIII treatment and is not correlated with the anti-human Bethesda titer. We also present data showing lower total rpFVIII use for initial bleed resolution when rpVIII is used upfront, as compared with use as rescue therapy. We validated our dosing algorithm, which uses much lower than FDA-recommended doses with 14 more patients than in our previously reported patient series.


Subject(s)
Factor VIII , Hemophilia A , Animals , Blood Coagulation Tests , Factor IX , Hemophilia A/drug therapy , Hemorrhage/drug therapy , Humans , Swine
13.
J Neurosurg Spine ; : 1-7, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33157530

ABSTRACT

OBJECTIVE: Spinal cord astrocytoma (SCA) is a rare tumor whose epidemiology has not been well defined. The authors utilized the Central Brain Tumor Registry of the United States (CBTRUS) to provide comprehensive up-to-date epidemiological data for this disease. METHODS: The CBTRUS was queried for SCAs on ICD-O-3 (International Classification of Diseases for Oncology, 3rd edition) histological and topographical codes. The age-adjusted incidence (AAI) per 100,000 persons was calculated and stratified by race, sex, age, and ethnicity. Joinpoint was used to calculate the annual percentage change (APC) in incidence. RESULTS: Two thousand nine hundred sixty-nine SCAs were diagnosed in the US between 1995 and 2016, resulting in an average of approximately 136 SCAs annually. The overall AAI was 0.047 (95% CI 0.045-0.049), and there was a statistically significant increase from 0.051 in 1995 to 0.043 in 2016. The peak incidence of 0.064 (95% CI 0.060-0.067) was found in the 0- to 19-year age group. The incidence in males was 0.053 (95% CI 0.050-0.055), which was significantly greater than the incidence in females (0.041, 95% CI 0.039-0.044). SCA incidence was significantly lower both in patients of Asian/Pacific Islander race (AAI = 0.034, 95% CI 0.028-0.042, p = 0.00015) and in patients of Hispanic ethnicity (AAI = 0.035, 95% CI 0.031-0.039, p < 0.001). The incidence of WHO grade I SCAs was significantly higher than those of WHO grade II, III, or IV SCAs (p < 0.001). CONCLUSIONS: The overall AAI of SCA from 1995 to 2016 was 0.047 per 100,000. The incidence peaked early in life for both sexes, reached a nadir between 20 and 34 years of age for males and between 35 and 44 years of age for females, and then slowly increased throughout adulthood, with a greater incidence in males. Pilocytic astrocytomas were the most common SCA in the study cohort. This study presents the most comprehensive epidemiological study of SCA incidence in the US to date.

14.
J Thromb Haemost ; 18(9): 2329-2340, 2020 09.
Article in English | MEDLINE | ID: mdl-32573897

ABSTRACT

BACKGROUND: Sickle cell disease (SCD) is characterized by chronic hemolytic anemia, vaso-occlusive crises, chronic inflammation, and activation of coagulation. The clinical complications such as painful crisis, stroke, pulmonary hypertension, nephropathy and venous thromboembolism lead to cumulative organ damage and premature death. High molecular weight kininogen (HK) is a central cofactor for the kallikrein-kinin and intrinsic coagulation pathways, which contributes to both coagulation and inflammation. OBJECTIVE: We hypothesize that HK contributes to the hypercoagulable and pro-inflammatory state that causes end-organ damage and early mortality in sickle mice. METHODS: We evaluated the role of HK in the Townes mouse model of SCD. RESULTS/CONCLUSIONS: We found elevated plasma levels of cleaved HK in sickle patients compared to healthy controls, suggesting ongoing HK activation in SCD. We used bone marrow transplantation to generate wild type and sickle cell mice on a HK-deficient background. We found that short-term HK deficiency attenuated thrombin generation and inflammation in sickle mice at steady state, which was independent of bradykinin signaling. Moreover, long-term HK deficiency attenuates kidney injury, reduces chronic inflammation, and ultimately improves survival of sickle mice.


Subject(s)
Anemia, Sickle Cell , Kininogen, High-Molecular-Weight , Anemia, Sickle Cell/complications , Animals , Blood Coagulation , Humans , Kidney , Mice , Thrombin
15.
Br J Haematol ; 190(3): 328-335, 2020 08.
Article in English | MEDLINE | ID: mdl-32064587

ABSTRACT

Sickle cell trait (SCT) is the carrier state for sickle cell disease that results from the HBB rs334 missense mutation (p.Glu6Val) in the ß-globin chain of haemoglobin. While not associated with any impact on life expectancy, it has been established that SCT is associated with an increased risk of both venous thromboembolism (and in particular, pulmonary embolism) and chronic kidney disease. It is largely unknown what short- or long-term effect, if any, pregnancy has upon the risk or outcomes of these disorders. In addition, SCT has been linked with various adverse outcomes in pregnancy, ranging from maternal complications such as elevated risk of bacteriuria to potentially life-threatening entities such as pre-eclampsia and prematurity. In these scenarios also, no clear association with SCT has been established. Given the high worldwide prevalence of SCT, further studies addressing these issues are warranted.


Subject(s)
Pregnancy Complications/etiology , Sickle Cell Trait/complications , Venous Thromboembolism/etiology , Abortion, Spontaneous/etiology , Bacteriuria/etiology , Female , Humans , Hypertension, Pregnancy-Induced/etiology , Infant, Low Birth Weight , Infant, Newborn , Obstetric Labor, Premature/etiology , Pregnancy , Pregnancy Complications/mortality , Pregnancy Complications, Hematologic , Pregnancy Outcome , Renal Insufficiency, Chronic/etiology
16.
Res Pract Thromb Haemost ; 4(1): 46-53, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31989084

ABSTRACT

Numerous methods for evaluation of global fibrinolytic activity in whole blood or plasma have been proposed, with the majority based on tissue-type plasminogen activator (t-PA) addition to initiate fibrinolysis. We propose that such an approach is useful to reveal hypofibrinolysis, but t-PA concentrations should be kept to a minimum. In this paper, we describe a low-concentration t-PA plasma turbidity assay to evaluate several congenital factor deficiencies, including plasminogen activator inhibitor-1 (PAI-1) and plasminogen deficiency, as well as hemophilia A and B. In addition, we demonstrate a threshold dependency on endogenous PAI-1 levels. To assess endogenous hyperfibrinolysis, we suggest that assays that avoid t-PA addition are preferable, with assays based on euglobulin fractionation remaining a viable choice. We describe a euglobulin fraction clot lysis time (ECLT) assay with spectrophotometric readout and other modifications, and evaluate it as a tool to measure hyperfibrinolysis in inherited clotting factor deficiency states. We demonstrate that the ECLT is predominantly driven by residual amounts of PAI-1, t-PA, and α2-antiplasmin. These assays should be further evaluated for the detection of hypo- or hyperfibrinolysis in acquired thrombotic or hemorrhagic disorders.

17.
Plant J ; 102(6): 1234-1248, 2020 06.
Article in English | MEDLINE | ID: mdl-31968138

ABSTRACT

Genetic selection for whole-plant water use efficiency (yield per transpiration; WUEplant ) in any crop-breeding programme requires high-throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi ; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13 Cleaf ) has been suggested as a potential time-integrated proxy for WUEi that may provide a tool to screen for WUEplant . However, a genetic link between δ13 Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13 Cleaf and WUEplant under well watered and water-limited growth conditions, a high-throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13 Cleaf were found and co-localized with transpiration, biomass accumulation, and WUEplant . Additionally, WUEplant for each of the δ13 Cleaf QTL allele classes was negatively correlated with δ13 Cleaf , as would be predicted when WUEi influences WUEplant . These results demonstrate that δ13 Cleaf is genetically linked to WUEplant , likely to be through their relationship with WUEi , and can be used as a high-throughput proxy to screen for WUEplant in these C4 species.


Subject(s)
Plant Leaves/metabolism , Setaria Plant/metabolism , Alleles , Carbon Isotopes/metabolism , Genes, Plant/genetics , Plant Transpiration/genetics , Quantitative Trait Loci/genetics , Quantitative Trait, Heritable , Setaria Plant/genetics , Water/metabolism
18.
Blood ; 135(10): 755-765, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31971571

ABSTRACT

Storage lesion-induced, red cell-derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV-induced coagulation activation, the ability of storage lesion-induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV-induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.


Subject(s)
Blood Coagulation/physiology , Cell-Derived Microparticles/physiology , Erythrocytes/ultrastructure , Factor IX/metabolism , Blood Coagulation Tests , Cell Aggregation/physiology , Cell Communication/physiology , Humans , Signal Transduction/physiology
19.
Blood ; 133(23): 2529-2541, 2019 06 06.
Article in English | MEDLINE | ID: mdl-30952675

ABSTRACT

Sickle cell disease (SCD) is associated with chronic activation of coagulation and an increased risk of venous thromboembolism. Erythrocyte sickling, the primary pathologic event in SCD, results in dramatic morphological changes in red blood cells (RBCs) because of polymerization of the abnormal hemoglobin. We used a mouse model of SCD and blood samples from sickle patients to determine if these changes affect the structure, properties, and dynamics of sickle clot formation. Sickling of RBCs and a significant increase in fibrin deposition were observed in venous thrombi formed in sickle mice. During ex vivo clot contraction, the number of RBCs extruded from sickle whole blood clots was significantly reduced compared with the number released from sickle cell trait and nonsickle clots in both mice and humans. Entrapment of sickled RBCs was largely factor XIIIa-independent and entirely mediated by the platelet-free cellular fraction of sickle blood. Inhibition of phosphatidylserine, but not administration of antisickling compounds, increased the number of RBCs released from sickle clots. Interestingly, whole blood, but not plasma clots from SCD patients, was more resistant to fibrinolysis, indicating that the cellular fraction of blood mediates resistance to tissue plasminogen activator. Sickle trait whole blood clots demonstrated an intermediate phenotype in response to tissue plasminogen activator. RBC exchange in SCD patients had a long-lasting effect on normalizing whole blood clot contraction. Furthermore, RBC exchange transiently reversed resistance of whole blood sickle clots to fibrinolysis, in part by decreasing platelet-derived PAI-1. These properties of sickle clots may explain the increased risk of venous thromboembolism observed in SCD.


Subject(s)
Anemia, Sickle Cell/complications , Anemia, Sickle Cell/pathology , Erythrocytes, Abnormal/pathology , Thrombosis/pathology , Venous Thrombosis/pathology , Anemia, Sickle Cell/blood , Animals , Erythrocytes/pathology , Humans , Mice , Thrombosis/blood , Venous Thrombosis/blood , Venous Thrombosis/etiology
20.
Plant Physiol ; 178(2): 699-715, 2018 10.
Article in English | MEDLINE | ID: mdl-30093527

ABSTRACT

Plant growth and water use are interrelated processes influenced by genetically controlled morphological and biochemical characteristics. Improving plant water use efficiency (WUE) to sustain growth in different environments is an important breeding objective that can improve crop yields and enhance agricultural sustainability. However, genetic improvement of WUE using traditional methods has proven difficult due to the low throughput and environmental heterogeneity of field settings. To overcome these limitations, this study utilizes a high-throughput phenotyping platform to quantify plant size and water use of an interspecific Setaria italica × Setaria viridis recombinant inbred line population at daily intervals in both well-watered and water-limited conditions. Our findings indicate that measurements of plant size and water use are correlated strongly in this system; therefore, a linear modeling approach was used to partition this relationship into predicted values of plant size given water use and deviations from this relationship at the genotype level. The resulting traits describing plant size, water use, and WUE all were heritable and responsive to soil water availability, allowing for a genetic dissection of the components of plant WUE under different watering treatments. Linkage mapping identified major loci underlying two different pleiotropic components of WUE. This study indicates that alleles controlling WUE derived from both wild and domesticated accessions can be utilized to predictably modulate trait values given a specified precipitation regime in the model C4 genus Setaria.


Subject(s)
Multifactorial Inheritance , Setaria Plant/genetics , Water/physiology , Alleles , Chromosome Mapping , Genotype , Phenotype , Setaria Plant/growth & development , Setaria Plant/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...