Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 316, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700735

ABSTRACT

Nowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today. The aim of this study is to develop new-generation antibiotics that inhibit both biofilm-producing bacteria and the biofilm itself. For this purpose, we designed four different peptides by combining two amino acid forms (D- and L-) with the same sequence having alpha helix structures. It was found that the combined use of these two forms can increase antimicrobial efficacy more than 30-fold. These results are supported by molecular modeling and scanning electron microscopy (SEM), at the same time cytotoxicity (IC50) and hemotoxicity (HC50) values remained within the safe range. Furthermore, antibiofilm activities of these peptides were investigated. Since the existing biofilm inhibition methods in the literature do not technically simulate the exact situation, in this study, we have developed a real-time observable biofilm model and a new detection method based on it, which we call the CoMIC method. Findings have shown that the NET1 peptide with D-leucine amino acid in its structure and the NET3 peptide with D-arginine amino acid in its structure are effective in inhibiting biofilm. As a conclusion, our peptides can be considered as potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in biofilm and clinical important bacteria. KEY POINTS: • Antimicrobial peptides were developed to inhibit both biofilms producing bacteria and the biofilm itself. • CoMIC will fill a very crucial gap in understanding biofilms and conducting the necessary quantitative studies. • Molecular modelling studies, NET1 peptide molecules tends to move towards and adhere to the membrane within nanoseconds.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Peptides , Biofilms , Microbial Sensitivity Tests , Biofilms/drug effects , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Models, Molecular , Microscopy, Electron, Scanning , Bacteria/drug effects
2.
Neurogastroenterol Motil ; 36(3): e14745, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263790

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic diseases that are not fully understood. Drugs in use can only be applied for a short time due to their side effects. Therefore, research is needed to develop new treatment approaches. In addition, it has been proven that IBD causes degeneration in the enteric nervous system (ENS). In recent years, it has been discussed that probiotics may have positive effects in the prevention and treatment of inflammatory enteric degeneration. Akkermansia muciniphila (A. muciniphila) is an anaerobic bacterium found in the mucin layer of the intestinal microbiota. It has been found that the population of A. muciniphila decreases in the case of different diseases. In light of this information, the curative effect of A. muciniphila application on colitis-induced inflammation and enteric degeneration was investigated. METHODS: In this study, 5 weeks of A. muciniphila treatment in Trinitro-benzene-sulfonic acid (TNBS)-induced chronic colitis model was investigated. Colon samples were examined at microscopic, biochemical, and molecular levels. Fecal samples were collected before, during, and after treatment to evaluate the population changes in the microbiota. Specific proteins secreted from the ENS were evaluated, and enteric degeneration was examined. RESULTS: As a result of the research, the ameliorative effects of A. muciniphila were shown in the TNBS colitis model-induced inflammation and ENS damage. DISCUSSION: In light of these results, A. muciniphila can potentially be evaluated as a microbiome-based treatment for IBD with further clinical and experimental studies.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Neuroinflammatory Diseases , Base Composition , Sequence Analysis, DNA , RNA, Ribosomal, 16S , Phylogeny , Colitis/chemically induced , Colitis/therapy , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Verrucomicrobia/genetics , Inflammation , Chronic Disease , Akkermansia
3.
Andrologia ; 54(11): e14600, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36146902

ABSTRACT

Obesity and male infertility are problems that affect population. Exercise is a nonpharmacological way to reduce the negative health effects of obesity. The purpose of this study was to examine the effects of exercise on hormone levels, blood-testis barrier, and inflammatory and oxidative biomarkers in rats that became obese due to a high-fat diet (HFD). Male rats received a standard diet (STD group) or a HFD (HFD group) for 18 weeks. During the final 6 weeks of the experiment, swimming exercises (1 h/5 days/week) were given to half of these animals (STD + EXC and HFD + EXC groups). Finally, blood and testicular tissues were analysed by biochemical and histological methods. Body weight, leptin, malondialdehyde, interleukin-6, TNF-alpha and myeloperoxidase levels, apoptotic cells and DNA fragmentation were increased, and testis weight, insulin, FSH, LH, testosterone, glutathione and superoxide dysmutase levels, proliferative cells, ZO-1, occludin, and gap junction protein Cx43 immunoreactivity were decreased in the HFD group. All these hormonal, morphological, oxidative and inflammatory biomarkers were enhanced in the HFD + EXC group. It is thought that exercise protected testicular cytotoxicity by regulating hormonal and oxidant/antioxidant balances and testicular function, inhibiting inflammation and apoptosis, as well as preserving blood-testis barrier.


Subject(s)
Diet, High-Fat , Sexually Transmitted Diseases , Rats , Male , Animals , Diet, High-Fat/adverse effects , Testis , Oxidative Stress , Obesity/metabolism , Biomarkers/metabolism
4.
PLoS One ; 17(8): e0273921, 2022.
Article in English | MEDLINE | ID: mdl-36044512

ABSTRACT

Transplantation is lifesaving and the most effective treatment for end-stage organ failure. The transplantation success depends on the functional preservation of organs prior to transplantation. Currently, the University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate (HTK) are the most commonly used preservation solutions. Despite intensive efforts, the functional preservation of solid organs prior to transplantation is limited to hours. In this study, we modified the UW solution containing components from both the UW and HTK solutions and analyzed their tissue-protective effect against ischemic injury. The composition of the UW solution was changed by reducing hydroxyethyl starch concentration and adding Histidine/Histidine-HCl which is the main component of HTK solution. Additionally, the preservation solutions were supplemented with melatonin and glucosamine. The protective effects of the preservation solutions were assessed by biochemical and microscopical analysis at 2, 10, 24, and 72 h after preserving the rat kidneys with static cold storage. Lactate dehydrogenase (LDH) activity in preservation solutions was measured at 2, 10, 24, and 72. It was not detectable at 2 h of preservation in all groups and 10 h of preservation in modified UW+melatonin (mUW-m) and modified UW+glucosamine (mUW-g) groups. At the 72nd hour, the lowest LDH activity (0.91 IU/g (0.63-1.17)) was measured in the mUW-m group. In comparison to the UW group, histopathological damage score was low in modified UW (mUW), mUW-m, and mUW-g groups at 10, 24, and 72 hours. The mUW-m solution at low temperature was an effective and suitable solution to protect renal tissue for up to 72 h.


Subject(s)
Ischemia , Kidney , Melatonin , Organ Preservation Solutions , Adenosine , Allopurinol/pharmacology , Animals , Glucosamine , Glucose/pharmacology , Glutathione/pharmacology , Histidine/pharmacology , Insulin/pharmacology , Ischemia/drug therapy , Ischemia/metabolism , Kidney/pathology , Mannitol/pharmacology , Melatonin/pharmacology , Organ Preservation/methods , Organ Preservation Solutions/chemistry , Organ Preservation Solutions/pharmacology , Potassium Chloride/pharmacology , Raffinose/pharmacology , Rats
5.
Lasers Med Sci ; 37(7): 2925-2936, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35441320

ABSTRACT

This study aimed to investigate how the combined use of low-level laser therapy (LLLT) and exercise, to reduce the possible side effects and/or increase the benefits of exercise, would affect oxidative stress, utrophin, irisin peptide, and skeletal, diaphragmatic, and cardiac muscle pathologies. In our study, 20 mdx mice were divided into four groups. Groups; sedentary and placebo LLLT (SC), sedentary and LLLT (SL), 30-min swimming exercise (Ex), and 30-min swimming exercise and LLLT (ExL). After 8 weeks of swimming exercise, muscle tests, biochemically; oxidative stress index (OSI), utrophin and irisin levels were measured. Skeletal, diaphragmatic and cardiac muscle histopathological scores, skeletal and cardiac muscle myocyte diameters were determined under the light and electron microscope. While only irisin levels were increased in group SL compared to SC, it was determined that OSI, heart muscle histopathological scores decreased and irisin levels increased in both exercise groups (p < 0.05). In addition, in the ExL group, an increase in rotarod and utrophin levels, and a decrease in muscle and diaphragm muscle histopathological scores were observed (p < 0.05). It was determined that the application of swimming exercise in the mdx mouse model increased the irisin level in the skeletal muscle, while reducing the OSI, degeneration in the heart muscle, inflammation and cardiopathy. When LLLT was applied in addition to exercise, muscle strength, skeletal muscle utrophin levels increased, and skeletal and diaphragmatic muscle degeneration and inflammation decreased. In addition, it was determined that only LLLT application increased the level of skeletal muscle irisin.


Subject(s)
Low-Level Light Therapy , Muscular Dystrophy, Duchenne , Animals , Disease Models, Animal , Fibronectins/metabolism , Inflammation/pathology , Mice , Mice, Inbred mdx , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/radiotherapy , Oxidative Stress , Swimming/physiology , Utrophin/metabolism , Utrophin/pharmacology , Utrophin/therapeutic use
6.
IUBMB Life ; 74(1): 85-92, 2022 01.
Article in English | MEDLINE | ID: mdl-34350697

ABSTRACT

The seminiferous tubules where spermatogenesis occurs are enveloped and protected by the Sertoli cells to support germ cells undergoing meiosis to produce haploid gametes. Clearly, induction of apoptosis in seminiferous tubules leads to abnormalities in spermatogenesis and male infertility. Studies demonstrated that increased hyperlipidemia impairs male infertility and spermatogenesis by enhancing seminiferous tubules apoptosis. However, molecular mechanisms underlying high-cholesterol-mediated testicular damage remain poorly elucidated. In this scope, we established a rabbit model and investigated the role of endoplasmic reticulum (ER) stress on high cholesterol diet induced seminiferous tubule apoptosis. Histopatological examinations revealed increased seminifer tubule apoptosis in testes of rabbits fed high cholesterol diet. In addition, phosphorylated forms of IRE1 and PERK, two well-identified markers of ER stress, were significantly induced in accordance with high cholesterol diet. High cholesterol diet also exhibited CHOP induction in testes, indicating increased ER stress related apoptosis. Supplementation of α-tocopherol significantly attenuated cholesterol mediated ER stress, and restored seminiferous tubules apoptosis. Taken together, our findings suggest that α-tocopherol might be capable to reduce testicular damage via ameliorating histopatological features and inhibiting seminiferous tubules apoptosis in hypercholesterolemic rabbits.


Subject(s)
Hypercholesterolemia , Testis , Animals , Apoptosis , Cholesterol , Diet , Male , Rabbits , alpha-Tocopherol/pharmacology
7.
J Radiat Res ; 55(5): 866-75, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24914105

ABSTRACT

It has been previously shown that acetylcholine (ACh) may affect pro-inflammatory and anti-inflammatory cytokines. The role of the cholinergic system in radiation-induced inflammatory responses and tissue damage remains unclear. Therefore, the present study was designed to determine the radio-protective properties of the cholinergic system in the ileum and the liver of rats. Rats were exposed to 8-Gy single-fraction whole-abdominal irradiation and were then decapitated at either 36 h or 10 d post-irradiation. The rats were treated either with intraperitoneal physiological saline (1 ml/kg), physostigmine (80 µg/kg) or atropine (50 µg/kg) twice daily for 36 h or 10 d. Cardiac blood samples and liver and ileal tissues were obtained in which TNF-α, IL-1ß and IL-10 levels were assayed using ELISA. In the liver and ileal homogenates, caspase-3 immunoblots were performed and myeloperoxidase (MPO) activity was analyzed. Plasma levels of IL-1ß and TNF-α increased significantly following radiation (P < 0.01 and P < 0.001, respectively) as compared with non-irradiated controls, and physostigmine treatment prevented the increase in the pro-inflammatory cytokines (P < 0.01 and P < 0.001, respectively). Plasma IL-10 levels were not found to be significantly changed following radiation, whereas physostigmine augmented IL-10 levels during the late phase (P < 0.01). In the liver and ileum homogenates, IL-1ß and TNF-α levels were also elevated following radiation, and this effect was inhibited by physostigmine treatment but not by atropine. Similarly, physostigmine also reversed the changes in MPO activity and in the caspase-3 levels in the liver and ileum. Histological examination revealed related changes. Physostigmine experiments suggested that ACh has a radio-protective effect not involving the muscarinic receptors.


Subject(s)
Acetylcholine/immunology , Ileal Diseases/immunology , Ileal Diseases/prevention & control , Liver Diseases/immunology , Liver Diseases/prevention & control , Radiation Injuries/immunology , Radiation Injuries/prevention & control , Animals , Cholinergic Agents/administration & dosage , Cytokines/immunology , Ileal Diseases/pathology , Liver Diseases/pathology , Radiation Dosage , Radiation Injuries/pathology , Rats , Rats, Sprague-Dawley , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...