Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 48: 128258, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34246754

ABSTRACT

The present work represents the design and synthesis of some azaheterocyclic coumarin derivatives which are evaluated as anti-lung cancer agents. Ten out of the twenty azaheterocyclic compounds showed superior activity than the standard drug staurosporine against non-small cell lung cancer (A549). Representing the four different azaheterocyclic series, compounds 4a, 5d, 6e, and 7d, which demonstrated IC50s of 2.38, 2.39, 1.05 and 3.98 µM, respectively, each exhibiting the best cytotoxicity in its group, were selected for further assessment of their toxicity on normal lung cells (WI-38). Compound 4a was selected for further investigations because it remarkably revealed less cytotoxicity (IC50 = 53.76 µM) than 7d (IC50 = 19.95 µM) on (WI-38) compared to staurosporine (IC50 = 24.41 µM). 4a was assessed for its ability to inhibit the angiokinases VEGFR-2, PDGFR, FGFR and the growth factor EGFR, remarkably it showed better VEGFR-2, PDGFR, FGFR inhibition than the reference drugs used and exhibited as well noticeable EGFR inhibition. Going further, 4a was capable of arresting the cell cycle at pre-G1 phase and S phase and inducing apoptosis. Moreover, the capability of the target 4a to interact with the key amino acids of VEGFR-2 binding site was detected by molecular docking. Finally, the in silico physicochemical properties of 4a were studied.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Growth Inhibitors/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Growth Inhibitors/chemical synthesis , Growth Inhibitors/chemistry , Humans , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Bioorg Med Chem ; 28(5): 115328, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31992477

ABSTRACT

Twenty five newly synthesized coumarin scaffold based derivatives were assayed for their in vitro anticancer activity against MCF-7 breast and PC-3 prostate cancer cell lines and were further assessed for their in vitro VEGFR-2 kinase inhibitory activity. The in vitro cytotoxic studies revealed that most of the synthesized compounds possessed very promising cytotoxicity against MCF-7, particularly; compounds 4a (IC50 = 1.24 µM) and 3d (IC50 = 1.65 µM) exhibited exceptional activities superior to the positive control staurosporine (IC50 = 8.81 µM). Similarly, the majority of the compounds exhibited higher antiproliferative activities compared to the reference standard with IC50 values ranging from 2.07 to 8.68 µM. The two cytotoxic derivatives 4a and 3d were selected to evaluate their inhibitory potencies against VEGFR-2 kinase. Remarkably, compound 4a, exhibited significant IC50 of 0.36 µM comparable to staurosporine (IC50; 0.33 µM). Moreover, it was capable of inducing preG1 apoptosis, cell growth arrest at G2/M phase and activating caspase-9. On the other hand, insignificant cytotoxic activity was observed for all compounds towards PC-3 cell line. Molecular docking study was carried out for the most active anti-VEGFR-2 derivative 4a, which demonstrated the ability of the tested compound to interact with the key amino acids in the target VEGFR-2 kinase binding site. Additionally, the ADME parameters and physicochemical properties of compound 4a were examined in silico.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Models, Molecular , Molecular Structure , PC-3 Cells , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...