Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1047008, 2023.
Article in English | MEDLINE | ID: mdl-37090791

ABSTRACT

Directly training spiking neural networks (SNNs) has remained challenging due to complex neural dynamics and intrinsic non-differentiability in firing functions. The well-known backpropagation through time (BPTT) algorithm proposed to train SNNs suffers from large memory footprint and prohibits backward and update unlocking, making it impossible to exploit the potential of locally-supervised training methods. This work proposes an efficient and direct training algorithm for SNNs that integrates a locally-supervised training method with a temporally-truncated BPTT algorithm. The proposed algorithm explores both temporal and spatial locality in BPTT and contributes to significant reduction in computational cost including GPU memory utilization, main memory access and arithmetic operations. We thoroughly explore the design space concerning temporal truncation length and local training block size and benchmark their impact on classification accuracy of different networks running different types of tasks. The results reveal that temporal truncation has a negative effect on the accuracy of classifying frame-based datasets, but leads to improvement in accuracy on event-based datasets. In spite of resulting information loss, local training is capable of alleviating overfitting. The combined effect of temporal truncation and local training can lead to the slowdown of accuracy drop and even improvement in accuracy. In addition, training deep SNNs' models such as AlexNet classifying CIFAR10-DVS dataset leads to 7.26% increase in accuracy, 89.94% reduction in GPU memory, 10.79% reduction in memory access, and 99.64% reduction in MAC operations compared to the standard end-to-end BPTT. Thus, the proposed method has shown high potential to enable fast and energy-efficient on-chip training for real-time learning at the edge.

2.
IEEE Trans Biomed Eng ; 70(4): 1389-1400, 2023 04.
Article in English | MEDLINE | ID: mdl-36282827

ABSTRACT

Dietary patterns can be the primary reason for many chronic diseases such as diabetes and obesity. State-of-the-art wearable sensor technologies can play a critical role in assisting patients in managing their eating habits by providing meaningful statistics on critical parameters such as the onset, duration, and frequency of eating. For an accurate yet fast food intake recognition, this work presents a novel Machine Learning (ML) based framework that shows promising results by leveraging optimized support vector machine (SVM) classifiers. The SVM classifiers are trained on three comprehensive datasets: OREBA, FIC, and CLEMSON. The developed framework outperforms existing algorithms by achieving F1-scores of 92%, 94%, 95%, and 85% on OREBA-SHA, OREBA-DIS, FIC, and CLEMSON datasets, respectively. In order to assess the generalization aspects, the proposed SVM framework is also trained on one of the three databases while being tested on the others and achieves acceptable F1-scores in all cases. The proposed algorithm is well suited for real-time applications since inference is made using a few support vector parameters compared to thousands in peer deep neural networks models.


Subject(s)
Gestures , Wearable Electronic Devices , Humans , Machine Learning , Algorithms , Neural Networks, Computer
3.
Sci Rep ; 12(1): 3992, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273205

ABSTRACT

Bio-impedance non-invasive measurement techniques usage is rapidly increasing in the agriculture industry. These measured impedance variations reflect tacit biochemical and biophysical changes of living and non-living tissues. Bio-impedance circuit modeling is an effective solution used in biology and medicine to fit the measured impedance. This paper proposes two new fractional-order bio-impedance plant stem models. These new models are compared with three commonly used bio-impedance fractional-order circuit models in plant modeling (Cole, Double Cole, and Fractional-order Double-shell). The two proposed models represent the characterization of the biological cellular morphology of the plant stem. Experiments are conducted on two samples of three different medical plant species from the family Lamiaceae, and each sample is measured at two inter-electrode spacing distances. Bio-impedance measurements are done using an electrochemical station (SP150) in the range of 100 Hz to 100 kHz. All employed models are compared by fitting the measured data to verify the efficiency of the proposed models in modeling the plant stem tissue. The proposed models give the best results in all inter-electrode spacing distances. Four different metaheuristic optimization algorithms are used in the fitting process to extract all models parameter and find the best optimization algorithm in the bio-impedance problems.


Subject(s)
Algorithms , Biophysics , Electric Impedance , Electrodes , Plant Stems
4.
Light Sci Appl ; 11(1): 3, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34974516

ABSTRACT

Neuromorphic vision sensors have been extremely beneficial in developing energy-efficient intelligent systems for robotics and privacy-preserving security applications. There is a dire need for devices to mimic the retina's photoreceptors that encode the light illumination into a sequence of spikes to develop such sensors. Herein, we develop a hybrid perovskite-based flexible photoreceptor whose capacitance changes proportionally to the light intensity mimicking the retina's rod cells, paving the way for developing an efficient artificial retina network. The proposed device constitutes a hybrid nanocomposite of perovskites (methyl-ammonium lead bromide) and the ferroelectric terpolymer (polyvinylidene fluoride trifluoroethylene-chlorofluoroethylene). A metal-insulator-metal type capacitor with the prepared composite exhibits the unique and photosensitive capacitive behavior at various light intensities in the visible light spectrum. The proposed photoreceptor mimics the spectral sensitivity curve of human photopic vision. The hybrid nanocomposite is stable in ambient air for 129 weeks, with no observable degradation of the composite due to the encapsulation of hybrid perovskites in the hydrophobic polymer. The functionality of the proposed photoreceptor to recognize handwritten digits (MNIST) dataset using an unsupervised trained spiking neural network with 72.05% recognition accuracy is demonstrated. This demonstration proves the potential of the proposed sensor for neuromorphic vision applications.

5.
IEEE Trans Neural Netw Learn Syst ; 33(8): 3988-4002, 2022 08.
Article in English | MEDLINE | ID: mdl-33571097

ABSTRACT

The performance of a biologically plausible spiking neural network (SNN) largely depends on the model parameters and neural dynamics. This article proposes a parameter optimization scheme for improving the performance of a biologically plausible SNN and a parallel on-field-programmable gate array (FPGA) online learning neuromorphic platform for the digital implementation based on two numerical methods, namely, the Euler and third-order Runge-Kutta (RK3) methods. The optimization scheme explores the impact of biological time constants on information transmission in the SNN and improves the convergence rate of the SNN on digit recognition with a suitable choice of the time constants. The parallel digital implementation leads to a significant speedup over software simulation on a general-purpose CPU. The parallel implementation with the Euler method enables around 180× ( 20× ) training (inference) speedup over a Pytorch-based SNN simulation on CPU. Moreover, compared with previous work, our parallel implementation shows more than 300× ( 240× ) improvement on speed and 180× ( 250× ) reduction in energy consumption for training (inference). In addition, due to the high-order accuracy, the RK3 method is demonstrated to gain 2× training speedup over the Euler method, which makes it suitable for online training in real-time applications.


Subject(s)
Neural Networks, Computer , Neurons , Action Potentials , Computer Simulation , Learning
6.
Front Neurosci ; 15: 638474, 2021.
Article in English | MEDLINE | ID: mdl-33746705

ABSTRACT

Various hypotheses of information representation in brain, referred to as neural codes, have been proposed to explain the information transmission between neurons. Neural coding plays an essential role in enabling the brain-inspired spiking neural networks (SNNs) to perform different tasks. To search for the best coding scheme, we performed an extensive comparative study on the impact and performance of four important neural coding schemes, namely, rate coding, time-to-first spike (TTFS) coding, phase coding, and burst coding. The comparative study was carried out using a biological 2-layer SNN trained with an unsupervised spike-timing-dependent plasticity (STDP) algorithm. Various aspects of network performance were considered, including classification accuracy, processing latency, synaptic operations (SOPs), hardware implementation, network compression efficacy, input and synaptic noise resilience, and synaptic fault tolerance. The classification tasks on Modified National Institute of Standards and Technology (MNIST) and Fashion-MNIST datasets were applied in our study. For hardware implementation, area and power consumption were estimated for these coding schemes, and the network compression efficacy was analyzed using pruning and quantization techniques. Different types of input noise and noise variations in the datasets were considered and applied. Furthermore, the robustness of each coding scheme to the non-ideality-induced synaptic noise and fault in analog neuromorphic systems was studied and compared. Our results show that TTFS coding is the best choice in achieving the highest computational performance with very low hardware implementation overhead. TTFS coding requires 4x/7.5x lower processing latency and 3.5x/6.5x fewer SOPs than rate coding during the training/inference process. Phase coding is the most resilient scheme to input noise. Burst coding offers the highest network compression efficacy and the best overall robustness to hardware non-idealities for both training and inference processes. The study presented in this paper reveals the design space created by the choice of each coding scheme, allowing designers to frame each scheme in terms of its strength and weakness given a designs' constraints and considerations in neuromorphic systems.

7.
Front Neurosci ; 14: 598876, 2020.
Article in English | MEDLINE | ID: mdl-33281549

ABSTRACT

To tackle real-world challenges, deep and complex neural networks are generally used with a massive number of parameters, which require large memory size, extensive computational operations, and high energy consumption in neuromorphic hardware systems. In this work, we propose an unsupervised online adaptive weight pruning method that dynamically removes non-critical weights from a spiking neural network (SNN) to reduce network complexity and improve energy efficiency. The adaptive pruning method explores neural dynamics and firing activity of SNNs and adapts the pruning threshold over time and neurons during training. The proposed adaptation scheme allows the network to effectively identify critical weights associated with each neuron by changing the pruning threshold dynamically over time and neurons. It balances the connection strength of neurons with the previous layer with adaptive thresholds and prevents weak neurons from failure after pruning. We also evaluated improvement in the energy efficiency of SNNs with our method by computing synaptic operations (SOPs). Simulation results and detailed analyses have revealed that applying adaptation in the pruning threshold can significantly improve network performance and reduce the number of SOPs. The pruned SNN with 800 excitatory neurons can achieve a 30% reduction in SOPs during training and a 55% reduction during inference, with only 0.44% accuracy loss on MNIST dataset. Compared with a previously reported online soft pruning method, the proposed adaptive pruning method shows 3.33% higher classification accuracy and 67% more reduction in SOPs. The effectiveness of our method was confirmed on different datasets and for different network sizes. Our evaluation showed that the implementation overhead of the adaptive method regarding speed, area, and energy is negligible in the network. Therefore, this work offers a promising solution for effective network compression and building highly energy-efficient neuromorphic systems in real-time applications.

8.
Micromachines (Basel) ; 11(6)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604821

ABSTRACT

The traditional computer architectures severely suffer from the bottleneck between the processing elements and memory that is the biggest barrier in front of their scalability. Nevertheless, the amount of data that applications need to process is increasing rapidly, especially after the era of big data and artificial intelligence. This fact forces new constraints in computer architecture design towards more data-centric principles. Therefore, new paradigms such as in-memory and near-memory processors have begun to emerge to counteract the memory bottleneck by bringing memory closer to computation or integrating them. Associative processors are a promising candidate for in-memory computation, which combines the processor and memory in the same location to alleviate the memory bottleneck. One of the applications that need iterative processing of a huge amount of data is stencil codes. Considering this feature, associative processors can provide a paramount advantage for stencil codes. For demonstration, two in-memory associative processor architectures for 2D stencil codes are proposed, implemented by both emerging memristor and traditional SRAM technologies. The proposed architecture achieves a promising efficiency for a variety of stencil applications and thus proves its applicability for scientific stencil computing.

9.
Micromachines (Basel) ; 10(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370261

ABSTRACT

Current computation architectures rely on more processor-centric design principles. On the other hand, the inevitable increase in the amount of data that applications need forces researchers to design novel processor architectures that are more data-centric. By following this principle, this study proposes an area-efficient Fast Fourier Transform (FFT) processor through in-memory computing. The proposed architecture occupies the smallest footprint of around 0.1 mm 2 inside its class together with acceptable power efficiency. According to the results, the processor exhibits the highest area efficiency ( FFT / s / area ) among the existing FFT processors in the current literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...