Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 17(12): e0278962, 2022.
Article in English | MEDLINE | ID: mdl-36576924

ABSTRACT

The amygdala is a brain region with a complex internal structure that is associated with psychiatric disease. Methodological limitations have complicated the study of the internal structure of the amygdala in humans. In the current study we examined the functional connectivity between nine amygdaloid nuclei and existing resting-state networks using a high spatial-resolution fMRI dataset. Using data-driven analysis techniques we found that there were three main clusters inside the amygdala that correlated with the somatomotor, ventral attention and default mode networks. In addition, we found that each resting-state networks depended on a specific configuration of amygdaloid nuclei. Finally, we found that co-activity in the cortical-nucleus increased with the severity of self-rated fear in participants. These results highlight the complex nature of amygdaloid connectivity that is not confined to traditional large-scale divisions, implicates specific configurations of nuclei with certain resting-state networks and highlights the potential clinical relevance of the cortical-nucleus in future studies of the human amygdala.


Subject(s)
Amygdala , Brain Mapping , Humans , Amygdala/diagnostic imaging , Brain , Magnetic Resonance Imaging , Attention , Neural Pathways
2.
Neuroimage Clin ; 35: 103070, 2022.
Article in English | MEDLINE | ID: mdl-35667173

ABSTRACT

The thalamus is a subcortical structure formed by different nuclei that relay information to the neocortex. Several reports have already described alterations of this structure in patients of schizophrenia that experience auditory hallucinations. However, to date no study has addressed whether the volumes of specific thalamic nuclei are altered in chronic patients experiencing persistent auditory hallucinations. We have processed structural MRI images using Freesurfer, and have segmented them into 25 nuclei using the probabilistic atlas developed by Iglesias and collaborators (Iglesias et al., 2018). To homogenize the sample, we have matched patients of schizophrenia, with and without persistent auditory hallucinations, with control subjects, considering sex, age and their estimated intracranial volume. This rendered a group number of 41 patients experiencing persistent auditory hallucinations, 35 patients without auditory hallucinations, and 55 healthy controls. In addition, we have also correlated the volume of the altered thalamic nuclei with the total score of the PSYRATS, a clinical scale used to evaluate the positive symptoms of this disorder. We have found alterations in the volume of 8 thalamic nuclei in both cohorts of patients with schizophrenia: The medial and lateral geniculate nuclei, the anterior, inferior, and lateral pulvinar nuclei, the lateral complex and the lateral and medial mediodorsal nuclei. We have also found some significant correlations between the volume of these nuclei in patients experiencing auditory hallucinations, and the total score of the PSYRATS scale. Altogether our results indicate that volumetric alterations of thalamic nuclei involved in audition may be related to persistent auditory hallucinations in chronic schizophrenia patients, whereas alterations in nuclei related to association cortices are evident in all patients. Future studies should explore whether the structural alterations are cause or consequence of these positive symptoms and whether they are already present in first episodes of psychosis.


Subject(s)
Schizophrenia , Hallucinations/diagnostic imaging , Hallucinations/etiology , Humans , Magnetic Resonance Imaging , Mediodorsal Thalamic Nucleus/diagnostic imaging , Schizophrenia/diagnostic imaging , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...