Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 227(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953226

ABSTRACT

The Cape fur seal (Arctocephalus pusillus pusillus) is one of the most colonial mammals, with colonies of up to hundreds of thousands of individuals during the breeding season. During the lactation period, mothers and pups are regularly separated as females undertake multi-day foraging trips at sea. Mothers and pups use a mutual vocal recognition system to reunite after separation. Such communication is highly constrained by both high background noise and risk of individual confusion owing to the density of seals. This study aimed to experimentally assess the acoustic features relevant for mother-pup vocal identification and the propagation properties of their calls. Playback experiments revealed that mother and pup individual vocal signatures rely on both temporal and frequency parameters: amplitude and frequency modulations, timbre and fundamental frequency (f0). This is more parameters than in any colonial species studied so far. The combinational use of acoustic features reinforces the concept that both environmental and social constraints may have acted as selective pressures on the individual vocal recognition systems. Theoretical propagation distances of mother and pup vocalisations were estimated to be below the range of distances at which mother-pup reunions can occur. This suggests that Cape fur seals may have strong abilities to extract vocal signals from the background noise, as previously demonstrated in the highly colonial king penguin. Investigating the transmission of information throughout the propagation of the signal as well as the ability of the receiving individual to decipher vocal signatures is crucial to understanding vocal recognition systems in the wild.


Subject(s)
Acoustics , Fur Seals , Vocalization, Animal , Animals , Fur Seals/physiology , Female , Homing Behavior
3.
PLoS One ; 16(9): e0250913, 2021.
Article in English | MEDLINE | ID: mdl-34469449

ABSTRACT

Human-controlled regimes can entrain behavioural responses and may impact animal welfare. Therefore, understanding the influence of schedules on animal behaviour can be a valuable tool to improve welfare, however information on behaviour overnight and in the absence of husbandry staff remains rare. Bottlenose dolphins (Tursiops spp.) are highly social marine mammals and the most common cetacean found in captivity. They communicate using frequency modulated signature whistles, a whistle type that is individually distinctive and used as a contact call. We investigated the vocalisations of ten dolphins housed in three social groups at uShaka Sea World dolphinarium to determine how patterns in acoustic behaviour link to dolphinarium routines. Investigation focused on overnight behaviour, housing decisions, weekly patterns, and transitional periods between the presence and absence of husbandry staff. Recordings were made from 17h00 - 07h00 over 24 nights, spanning May to August 2018. Whistle (including signature whistle) presence and production rate decreased soon after husbandry staff left the facility, was low over night, and increased upon staff arrival. Results indicated elevated arousal states particularly associated with the morning feeding regime. Housing in the pool configuration that allowed observation of staff activities from all social groups was characterised by an increase in whistle presence and rates. Heightened arousal associated with staff presence was reflected in the structural characteristics of signature whistles, particularly maximum frequency, frequency range and number of whistle loops. We identified individual differences in both production rate and the structural modification of signature whistles under different contexts. Overall, these results revealed a link between scheduled activity and associated behavioural responses, which can be used as a baseline for future welfare monitoring where changes from normal behaviour may reflect shifts in welfare state.


Subject(s)
Arousal/physiology , Bottle-Nosed Dolphin/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animal Husbandry , Animals , Female , Human Activities , Humans , Male
4.
Biol Lett ; 17(6): 20210136, 2021 06.
Article in English | MEDLINE | ID: mdl-34102070

ABSTRACT

We use genomics to identify the natal origin of a grey whale found in the South Atlantic, at least 20 000 km from the species core range (halfway around the world). The data indicate an origin in the North Pacific, possibly from the endangered western North Pacific population, thought to include only approximately 200 individuals. This contributes to our understanding of Atlantic sightings of this species known primarily from the North Pacific, and could have conservation implications if grey whales have the potential for essentially global dispersion. More broadly, documenting and understanding rare extreme migration events have potential implications for the understanding of how a species may be able to respond to global change.


Subject(s)
Water , Whales , Animals
5.
J Exp Biol ; 224(Pt 6)2021 03 26.
Article in English | MEDLINE | ID: mdl-33771935

ABSTRACT

Dwarf sperm whales (Kogia sima) are small toothed whales that produce narrow-band high-frequency (NBHF) echolocation clicks. Such NBHF clicks, subject to high levels of acoustic absorption, are usually produced by small, shallow-diving odontocetes, such as porpoises, in keeping with their short-range echolocation and fast click rates. Here, we sought to address the problem of how the little-studied and deep-diving Kogia can hunt with NBHF clicks in the deep sea. Specifically, we tested the hypotheses that Kogia produce NBHF clicks with longer inter-click intervals (ICIs), higher directionality and higher source levels (SLs) compared with other NBHF species. We did this by deploying an autonomous deep-water vertical hydrophone array in the Bahamas, where no other NBHF species are present, and by taking opportunistic recordings of a close-range Kogia sima in a South African harbour. Parameters from on-axis clicks (n=46) in the deep revealed very narrow-band clicks (root mean squared bandwidth, BWRMS, of 3±1 kHz), with SLs of up to 197 dB re. 1 µPa peak-to-peak (µPapp) at 1 m, and a half-power beamwidth of 8.8 deg. Their ICIs (mode of 245 ms) were much longer than those of porpoises (<100 ms), suggesting an inspection range that is longer than detection ranges of single prey, perhaps to facilitate auditory streaming of a complex echo scene. On-axis clicks in the shallow harbour (n=870) had ICIs and SLs in keeping with source parameters of other NBHF cetaceans. Thus, in the deep, dwarf sperm whales use a directional, but short-range echolocation system with moderate SLs, suggesting a reliable mesopelagic prey habitat.


Subject(s)
Echolocation , Acoustics , Animals , Ecosystem , Sound Spectrography , Vocalization, Animal , Whales
6.
Proc Biol Sci ; 285(1883)2018 07 18.
Article in English | MEDLINE | ID: mdl-30051842

ABSTRACT

The costs of predation may exert significant pressure on the mode of communication used by an animal, and many species balance the benefits of communication (e.g. mate attraction) against the potential risk of predation. Four groups of toothed whales have independently evolved narrowband high-frequency (NBHF) echolocation signals. These signals help NBHF species avoid predation through acoustic crypsis by echolocating and communicating at frequencies inaudible to predators such as mammal-eating killer whales. Heaviside's dolphins (Cephalorhynchus heavisidii) are thought to exclusively produce NBHF echolocation clicks with a centroid frequency around 125 kHz and little to no energy below 100 kHz. To test this, we recorded wild Heaviside's dolphins in a sheltered bay in Namibia. We demonstrate that Heaviside's dolphins produce a second type of click with lower frequency and broader bandwidth in a frequency range that is audible to killer whales. These clicks are used in burst-pulses and occasional click series but not foraging buzzes. We evaluate three different hypotheses and conclude that the most likely benefit of these clicks is to decrease transmission directivity and increase conspecific communication range. The expected increase in active space depends on background noise but ranges from 2.5 (Wenz Sea State 6) to 5 times (Wenz Sea State 1) the active space of NBHF signals. This dual click strategy therefore allows these social dolphins to maintain acoustic crypsis during navigation and foraging, and to selectively relax their crypsis to facilitate communication with conspecifics.


Subject(s)
Dolphins/physiology , Echolocation , Feeding Behavior , Food Chain , Animals , Atlantic Ocean , Namibia , Whale, Killer
7.
J Acoust Soc Am ; 141(4): 2489, 2017 04.
Article in English | MEDLINE | ID: mdl-28464668

ABSTRACT

Passive acoustic monitoring (PAM) is commonly used to generate information on the distribution, abundance, and behavior of cetacean species. In African waters, the utilization of PAM lags behind most other continents. This study examines whether the whistles of three coastal delphinid species (Delphinus delphis, Tursiops truncatus, and Tursiops aduncus) commonly encountered in the southern African subregion can be readily distinguished using both statistical analysis of standard whistle parameters and the automated detection and classification software PAMGuard. A first account of whistles recorded from D. delphis from South Africa is included. Using PAMGuard, classification to species was high with an overall mean correct classification rate of 87.3%. Although lower, high rates of correct classification were also found (78.4%) when the two T. aduncus populations were included separately. Classification outcomes reflected patterns observed in standard whistle parameters. Such acoustic discrimination may be useful for confirmation of morphologically similar species in the field. Classification success was influenced by training and testing the classifier with data from different populations, highlighting the importance of locally collected acoustic data to inform classifiers. The small number of sampling populations may have inflated the classification success, therefore, classification trials using a greater number of species are recommended.


Subject(s)
Acoustics , Dolphins/classification , Dolphins/psychology , Environmental Monitoring/methods , Signal Processing, Computer-Assisted , Vocalization, Animal/classification , Africa South of the Sahara , Animals , Automation , Sound Spectrography , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL