Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Res (Stuttg) ; 71(7): 395-406, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34182589

ABSTRACT

The present study investigated the potential of vascular endothelial growth factor (VEGF) promoter to derive cytosine deaminase (CD) transfected by polyamidoamine (G4-PAMAM) dendrimers to 4T1 murine breast cancer cell line as gene-directed enzyme/prodrug therapy. The VEGF promoter and cytosine deaminase gene were cloned into the pEGFP-N1vector from the genomic DNA of 4T1 and E. coli, respectively. The frequency of transfection for VEGF-CD-pEGFP-N1 and pEGFP-N1- CD treated groups was 35±3 and 36±4, respectively. MTT assay was perform to evaluate the cytotoxic effects of converted 5-flurocytosine on 4T1 cells. Also, the optimal concentration of 5-FC in 4T1 cells transfected by VEGF-CD-pEGFP-N1 plasmid was evaluated. The GFP expression of transfected 4T1 cells by VEGF-CD-pEGFP-N1were observed by fluorescent microscopy and flowcytometry. Results demonstrated that the suicide CD gene was successfully expressed in 4T1 cells determined by RT-PCR and GFP expression. A concentration of 200 µg/ml 5-FC was identified as optimal dose of prodrug. Furthermore, the CD/5-FC enzyme/prodrug system not only demonstrated toxicity on transformed 4T1 cells but also exerted a 'bystander effect' determined by MTT assay. The results showed that by 35% transfection with VEGF-CD-pEGFP-N1and CD-pEGFP-N1 plasmids, 80% and 90% inhibition of the cells growth occurred, respectively.


Subject(s)
Breast Neoplasms , Prodrugs , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Cytosine Deaminase/genetics , Escherichia coli , Female , Flucytosine/pharmacology , Genetic Therapy , Humans , Mice , Transfection , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...