Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776952

ABSTRACT

Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.

2.
Chem Mater ; 36(8): 3588-3603, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38681089

ABSTRACT

The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment. Despite these benefits, Zr-MOFs suffer degradation and aggregation in real, in vivo conditions, whereas the loaded drugs will suffer the burst effect-i.e., the fast release of drugs in less than 48 h. To tackle these issues, we developed a simple but effective bilayer coating strategy in a generic, two-step process. In this work, bilayer-coated MOF NU-901 remained well dispersed in biologically relevant fluids such as buffers and cell growth media. Additionally, the coating enhances the long-term stability of drug-loaded MOFs in water by simultaneously preventing sustained leakage of the drug and aggregation of the MOF particles. We evaluated our materials for the encapsulation and transport of pemetrexed, the standard-of-care chemotherapy in mesothelioma. The bilayer coating allowed for a slowed release of pemetrexed over 7 days, superior to the typical 48 h release found in bare MOFs. This slow release and the related performance were studied in vitro using both A549 lung cancer and 3T mesothelioma cells. Using high-resolution microscopy, we found the successful uptake of bilayer-coated MOFs by the cells with an accumulation in the lysosomes. The pemetrex-loaded NU-901 was indeed cytotoxic to 3T and A549 cancer cells. Finally, we demonstrated the general approach by extending the coating strategy using two additional lipids and four surfactants. This research highlights how a simple yet effective bilayer coating provides new insights into the design of promising MOF-based drug delivery systems.

3.
Blood ; 143(22): 2314-2331, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38457357

ABSTRACT

ABSTRACT: For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.


Subject(s)
Activin Receptors, Type II , Codon, Nonsense , Endoglin , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Endoglin/genetics , Endoglin/metabolism , Activin Receptors, Type II/genetics , Smad4 Protein/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mutation , Male , Female , Nonsense Mediated mRNA Decay
4.
J Mol Cell Cardiol ; 164: 136-147, 2022 03.
Article in English | MEDLINE | ID: mdl-34923199

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, 13C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Cells, Cultured , Energy Metabolism , Glucose/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism
5.
Biochem Biophys Res Commun ; 583: 121-127, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34735873

ABSTRACT

In response to cardiac injury, increased activity of the hexosamine biosynthesis pathway (HBP) is linked with cytoprotective as well as adverse effects depending on the type and duration of injury. Glutamine-fructose amidotransferase (GFAT; gene name gfpt) is the rate-limiting enzyme that controls flux through HBP. Two protein isoforms exist in the heart called GFAT1 and GFAT2. There are conflicting data on the relative importance of GFAT1 and GFAT2 during stress-induced HBP responses in the heart. Using neonatal rat cardiac cell preparations, targeted knockdown of GFPT1 and GFPT2 were performed and HBP activity measured. Immunostaining with specific GFAT1 and GFAT2 antibodies was undertaken in neonatal rat cardiac preparations and murine cardiac tissues to characterise cell-specific expression. Publicly available human heart single cell sequencing data was interrogated to determine cell-type expression. Western blots for GFAT isoform protein expression were performed in human cardiomyocytes derived from induced pluripotent stem cells (iPSCs). GFPT1 but not GFPT2 knockdown resulted in a loss of stress-induced protein O-GlcNAcylation in neonatal cardiac cell preparations indicating reduced HBP activity. In rodent cells and tissue, immunostaining for GFAT1 identified expression in both cardiac myocytes and fibroblasts whereas immunostaining for GFAT2 was only identified in fibroblasts. Further corroboration of findings in human heart cells identified an enrichment of GFPT2 gene expression in cardiac fibroblasts but not ventricular myocytes whereas GFPT1 was expressed in both myocytes and fibroblasts. In human iPSC-derived cardiomyocytes, only GFAT1 protein was expressed with an absence of GFAT2. In conclusion, these results indicate that GFAT1 is the primary cardiomyocyte isoform and GFAT2 is only present in cardiac fibroblasts. Cell-specific isoform expression may have differing effects on cell function and should be considered when studying HBP and GFAT functions in the heart.


Subject(s)
Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Fibroblasts/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Hexosamines/biosynthesis , Hexosamines/metabolism , Induced Pluripotent Stem Cells , Mice , Myocardium/cytology , Protein Isoforms , Rats, Sprague-Dawley
6.
Eur Respir Rev ; 29(157)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33004527

ABSTRACT

The respiratory tract and its resident immune cells face daily exposure to stress, both from without and from within. Inhaled pathogens, including severe acute respiratory syndrome coronavirus 2, and toxins from pollution trigger a cellular defence system that reduces protein synthesis to minimise viral replication or the accumulation of misfolded proteins. Simultaneously, a gene expression programme enhances antioxidant and protein folding machineries in the lung. Four kinases (PERK, PKR, GCN2 and HRI) sense a diverse range of stresses to trigger this "integrated stress response". Here we review recent advances identifying the integrated stress response as a critical pathway in the pathogenesis of pulmonary diseases, including pneumonias, thoracic malignancy, pulmonary fibrosis and pulmonary hypertension. Understanding the integrated stress response provides novel targets for the development of therapies.


Subject(s)
Inflammation/metabolism , Lung Diseases/metabolism , Oxidative Stress/physiology , Biomarkers/metabolism , Humans
7.
PLoS One ; 11(11): e0165873, 2016.
Article in English | MEDLINE | ID: mdl-27806100

ABSTRACT

Heterochromatinisation of pericentromeres, which in mice consist of arrays of major satellite repeats, are important for centromere formation and maintenance of genome stability. The dysregulation of this process has been linked to genomic stress and various cancers. Here we show in mice that the proteasome binds to major satellite repeats and proteasome inhibition by MG132 results in their transcriptional de-repression; this de-repression is independent of cell-cycle perturbation. The transcriptional activation of major satellite repeats upon proteasome inhibition is accompanied by delocalisation of heterochromatin protein 1 alpha (HP1α) from chromocentres, without detectable change in the levels of histone H3K9me3, H3K4me3, H3K36me3 and H3 acetylation on the major satellite repeats. Moreover, inhibition of the proteasome was found to increase the number of chromocentres per cell, reflecting destabilisation of the chromocentre structures. Our findings suggest that the proteasome plays a role in maintaining heterochromatin integrity of pericentromeres.


Subject(s)
Centromere/chemistry , Chromosomal Proteins, Non-Histone/metabolism , DNA, Satellite/genetics , Leupeptins/pharmacology , Proteasome Endopeptidase Complex/metabolism , Acetylation , Animals , Centromere/drug effects , Centromere/genetics , Chromatin/chemistry , Chromatin/genetics , Chromobox Protein Homolog 5 , Chromosomal Instability , DNA, Satellite/drug effects , Histones/metabolism , In Situ Hybridization, Fluorescence , Mice , NIH 3T3 Cells , Transcription, Genetic/drug effects
8.
Bioessays ; 38(1): 4-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26568467

ABSTRACT

Understanding epigenetic modifications to chromatin that regulate gene expression and cell-fate decisions is now possible in single cells thanks to recent technological advances. As interdisciplinary approaches are required to derive biological principles, this workshop brought together some of Europe's leading researchers in single-cell epigenetics to share technologies and biological insights.


Subject(s)
Chromatin/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Single-Cell Analysis , Cell Differentiation/genetics , Gene Expression , Histones/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...