Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
bioRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38659791

ABSTRACT

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

2.
Front Endocrinol (Lausanne) ; 14: 1280847, 2023.
Article in English | MEDLINE | ID: mdl-38027209

ABSTRACT

Background: In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives: To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods: The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results: Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions: These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.


Subject(s)
Melatonin , Female , Animals , Cattle , Humans , Melatonin/pharmacology , Melatonin/metabolism , In Vitro Oocyte Maturation Techniques , Oocytes/metabolism , Cytogenetic Analysis , Epigenesis, Genetic , Lipids
4.
Epigenetics ; 18(1): 2153511, 2023 12.
Article in English | MEDLINE | ID: mdl-36495138

ABSTRACT

Migration from one location to another often comes with a change in environmental conditions. Here, we analysed features of DNA methylation in young, adult British-Bangladeshi women who experienced different environments during their childhoods: a) migrants, who grew up in Bangladesh with exposure to comparatively higher pathogen loads and poorer health care, and b) second-generation British-Bangladeshis, born to Bangladeshi parents, who grew up in the UK. We used buccal DNA to estimate DNA methylation-based age (DNAm age) from 14 migrants and 11 second-generation migrants, aged 18-35 years. 'AgeAccel,' a measure of DNAm age, independent of chronological age, showed that the group of women who spent their childhood in Bangladesh had higher AgeAccel (P = 0.028), compared to their UK peers. Since epigenetic clocks have been proposed to be associated with maintenance processes of epigenetic systems, we evaluated the preference for concordant DNA methylation at the luteinizing hormone/choriogonadotropin receptor (LHCGR/LHR) locus, which harbours one of the CpGs contributing to Horvath's epigenetic clock. Measurements on both strands of individual, double-stranded DNA molecules indicate higher stability of DNA methylation states at this LHCGR/LHR locus in samples of women who grew up in Bangladesh. Together, our two independent analytical approaches imply that childhood environments may induce subtle changes that are detectable long after exposure occurred, which might reflect altered activity of the epigenetic maintenance system or a difference in the proportion of cell types in buccal tissue. This exploratory work supports our earlier findings that adverse childhood environments lead to phenotypic life history trade-offs.


Subject(s)
Aging , DNA Methylation , Epigenesis, Genetic , Transients and Migrants , Adult , Child , Female , Humans , Aging/genetics , Asian People , Bangladesh , United Kingdom , CpG Islands , Environment
5.
ISME J ; 17(1): 21-35, 2023 01.
Article in English | MEDLINE | ID: mdl-36151458

ABSTRACT

A debate is currently ongoing as to whether intensive livestock farms may constitute reservoirs of clinically relevant antimicrobial resistance (AMR), thus posing a threat to surrounding communities. Here, combining shotgun metagenome sequencing, machine learning (ML), and culture-based methods, we focused on a poultry farm and connected slaughterhouse in China, investigating the gut microbiome of livestock, workers and their households, and microbial communities in carcasses and soil. For both the microbiome and resistomes in this study, differences are observed across environments and hosts. However, at a finer scale, several similar clinically relevant antimicrobial resistance genes (ARGs) and similar associated mobile genetic elements were found in both human and broiler chicken samples. Next, we focused on Escherichia coli, an important indicator for the surveillance of AMR on the farm. Strains of E. coli were found intermixed between humans and chickens. We observed that several ARGs present in the chicken faecal resistome showed correlation to resistance/susceptibility profiles of E. coli isolates cultured from the same samples. Finally, by using environmental sensing these ARGs were found to be correlated to variations in environmental temperature and humidity. Our results show the importance of adopting a multi-domain and multi-scale approach when studying microbial communities and AMR in complex, interconnected environments.


Subject(s)
Anti-Infective Agents , Microbiota , Soil Microbiology , Animals , Humans , Anti-Bacterial Agents , Chickens/microbiology , Escherichia coli/genetics , Genes, Bacterial , Livestock/microbiology , Drug Resistance, Bacterial
6.
Environ Int ; 169: 107516, 2022 11.
Article in English | MEDLINE | ID: mdl-36122459

ABSTRACT

Waste from dairy production is one of the largest sources of contamination from antimicrobial resistant bacteria (ARB) and genes (ARGs) in many parts of the world. However, studies to date do not provide necessary evidence to inform antimicrobial resistance (AMR) countermeasures. We undertook a detailed, interdisciplinary, longitudinal analysis of dairy slurry waste. The slurry contained a population of ARB and ARGs, with resistances to current, historical and never-used on-farm antibiotics; resistances were associated with Gram-negative and Gram-positive bacteria and mobile elements (ISEcp1, Tn916, Tn21-family transposons). Modelling and experimental work suggested that these populations are in dynamic equilibrium, with microbial death balanced by fresh input. Consequently, storing slurry without further waste input for at least 60 days was predicted to reduce ARB spread onto land, with > 99 % reduction in cephalosporin resistant Escherichia coli. The model also indicated that for farms with low antibiotic use, further reductions are unlikely to reduce AMR further. We conclude that the slurry tank is a critical point for measurement and control of AMR, and that actions to limit the spread of AMR from dairy waste should combine responsible antibiotic use, including low total quantity, avoidance of human critical antibiotics, and choosing antibiotics with shorter half-lives, coupled with appropriate slurry storage.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Cephalosporins , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Humans
7.
Viruses ; 14(4)2022 03 27.
Article in English | MEDLINE | ID: mdl-35458422

ABSTRACT

Pathogenicity and pathology of rabies virus (RABV) varies according to the variant, but the mechanisms are not completely known. In this study, gene expression profile in brains of mice experimentally infected with RABV isolated from a human case of dog rabies (V2) or vampire bat-acquired rabies (V3) were analyzed. In total, 138 array probes associated with 120 genes were expressed differentially between mice inoculated with V2 and sham-inoculated control mice at day 10 post-inoculation. A single probe corresponding to an unannotated gene was identified in V3 versus control mice. Gene ontology (GO) analysis revealed that all of the genes upregulated in mice inoculated with V2 RABV were involved in the biological process of immune defense against pathogens. Although both variants are considered pathogenic, inoculation by the same conditions generated different gene expression results, which is likely due to differences in pathogenesis between the dog and bat RABV variants. This study demonstrated the global gene expression in experimental infection due to V3 wild-type RABV, from the vampire bat Desmodus rotundus, an important source of infection for humans, domestic animals and wildlife in Latin America.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Dogs , Mice , Microarray Analysis , Transcriptome , Virulence
8.
BMC Biol ; 20(1): 11, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996447

ABSTRACT

BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Cholestenone 5 alpha-Reductase , Kisspeptins , Membrane Proteins/metabolism , Adaptation, Physiological , Animals , Cholestenone 5 alpha-Reductase/genetics , Cholestenone 5 alpha-Reductase/metabolism , Epigenesis, Genetic , Female , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Humans , Kisspeptins/genetics , Kisspeptins/metabolism , Mice
9.
Front Genet ; 13: 1096071, 2022.
Article in English | MEDLINE | ID: mdl-36733939

ABSTRACT

N6-methyladenosine (m6A) is the most abundant internal mRNA modification and is dynamically regulated through distinct protein complexes that methylate, demethylate, and/or interpret the m6A modification. These proteins, and the m6A modification, are involved in the regulation of gene expression, RNA stability, splicing and translation. Given its role in these crucial processes, m6A has been implicated in many diseases, including in cancer development and progression. Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in men and recent studies support a role for m6A in PCa. Despite this, the literature currently lacks an integrated analysis of the expression of key components of the m6A RNA methyltransferase complex, both in PCa patients and in well-established cell line models. For this reason, this study used immunohistochemistry and functional studies to investigate the mechanistic and clinical significance of the METTL3, METTL14, WTAP and CBLL1 components of the m6A methyltransferase complex in PCa specimens and cell lines. Expression of METTL3 and CBLL1, but not METTL14 and WTAP, was associated with poorer PCa patient outcomes. Expression of METTL3, METTL14, WTAP and CBLL1 was higher in PCa cells compared with non-malignant prostate cells, with the highest expression seen in castrate-sensitive, androgen-responsive PCa cells. Moreover, in PCa cell lines, expression of METTL3 and WTAP was found to be androgen-regulated. To investigate the mechanistic role(s) of the m6A methyltransferase complex in PCa cells, short hairpin RNA (shRNA)-mediated knockdown coupled with next generation sequencing was used to determine the transcriptome-wide roles of METTL3, the catalytic subunit of the m6A methyltransferase complex. Functional depletion of METTL3 resulted in upregulation of the androgen receptor (AR), together with 134 AR-regulated genes. METTL3 knockdown also resulted in altered splicing, and enrichment of cell cycle, DNA repair and metabolic pathways. Collectively, this study identified the functional and clinical significance of four essential m6A complex components in PCa patient specimens and cell lines for the first time. Further studies are now warranted to determine the potential therapeutic relevance of METTL3 inhibitors in development to treat leukaemia to benefit patients with PCa.

10.
Commun Biol ; 4(1): 691, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099857

ABSTRACT

Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.


Subject(s)
Cytosine/analogs & derivatives , Long Interspersed Nucleotide Elements , Open Reading Frames , Spermatids/metabolism , Animals , Cytosine/metabolism , Male , Mice , Spermatids/cytology , Spermatogenesis , Transcription, Genetic
11.
Front Immunol ; 12: 573266, 2021.
Article in English | MEDLINE | ID: mdl-34046027

ABSTRACT

Epigenetic modifications regulate gene expression in the host response to a diverse range of pathogens. The extent and consequences of epigenetic modification during macrophage responses to Streptococcus pneumoniae, and the role of pneumolysin, a key Streptococcus pneumoniae virulence factor, in influencing these responses, are currently unknown. To investigate this, we infected human monocyte derived macrophages (MDMs) with Streptococcus pneumoniae and addressed whether pneumolysin altered the epigenetic landscape and the associated acute macrophage transcriptional response using a combined transcriptomic and proteomic approach. Transcriptomic analysis identified 503 genes that were differentially expressed in a pneumolysin-dependent manner in these samples. Pathway analysis highlighted the involvement of transcriptional responses to core innate responses to pneumococci including modules associated with metabolic pathways activated in response to infection, oxidative stress responses and NFκB, NOD-like receptor and TNF signalling pathways. Quantitative proteomic analysis confirmed pneumolysin-regulated protein expression, early after bacterial challenge, in representative transcriptional modules associated with innate immune responses. In parallel, quantitative mass spectrometry identified global changes in the relative abundance of histone post translational modifications (PTMs) upon pneumococcal challenge. We identified an increase in the relative abundance of H3K4me1, H4K16ac and a decrease in H3K9me2 and H3K79me2 in a PLY-dependent fashion. We confirmed that pneumolysin blunted early transcriptional responses involving TNF-α and IL-6 expression. Vorinostat, a histone deacetylase inhibitor, similarly downregulated TNF-α production, reprising the pattern observed with pneumolysin. In conclusion, widespread changes in the macrophage transcriptional response are regulated by pneumolysin and are associated with global changes in histone PTMs. Modulating histone PTMs can reverse pneumolysin-associated transcriptional changes influencing innate immune responses, suggesting that epigenetic modification by pneumolysin plays a role in dampening the innate responses to pneumococci.


Subject(s)
Bacterial Proteins/metabolism , Epigenesis, Genetic , Gene Expression Profiling , Macrophages/metabolism , Streptococcus pneumoniae/metabolism , Streptolysins/metabolism , Bacterial Proteins/genetics , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Histones/metabolism , Host-Pathogen Interactions , Humans , Macrophages/microbiology , Methylation , Protein Processing, Post-Translational , Proteome/metabolism , Proteomics/methods , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/physiology , Streptolysins/genetics
12.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673278

ABSTRACT

One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.


Subject(s)
Blastocyst/metabolism , Carbon/metabolism , DNA Methylation , Epigenesis, Genetic , Granulosa Cells/metabolism , Oocytes/metabolism , Theca Cells/metabolism , Animals , Cattle , Female , Hep G2 Cells , Humans , Rats , Swine
13.
Pathogens ; 9(12)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260788

ABSTRACT

Streptococcus uberis is a common cause of intramammary infection and mastitis in dairy cattle. Unlike other mammary pathogens, S. uberis evades detection by mammary epithelial cells, and the host-pathogen interactions during early colonisation are poorly understood. Intramammary challenge of dairy cows with S. uberis (strain 0140 J) or isogenic mutants lacking the surface-anchored serine protease, SUB1154, demonstrated that virulence was dependent on the presence and correct location of this protein. Unlike the wild-type strain, the mutant lacking SUB1154 failed to elicit IL-1ß from ex vivo CD14+ cells obtained from milk (bovine mammary macrophages, BMM), but this response was reinstated by complementation with recombinant SUB1154; the protein in isolation elicited no response. Production of IL-1ß was ablated in the presence of various inhibitors, indicating dependency on internalisation and activation of NLRP3 and caspase-1, consistent with inflammasome activation. Similar transcriptomic changes were detected in ex vivo BMM in response to the wild-type or the SUB1154 deletion mutant, consistent with S. uberis priming BMM, enabling the SUB1154 protein to activate inflammasome maturation in a transcriptionally independent manner. These data can be reconciled in a novel model of pathogenesis in which, paradoxically, early colonisation is dependent on the innate response to the initial infection.

14.
Viruses ; 12(10)2020 09 27.
Article in English | MEDLINE | ID: mdl-32992478

ABSTRACT

Influenza A virus is a major global pathogen of humans, and there is an unmet need for effective antivirals. Current antivirals against influenza A virus directly target the virus and are vulnerable to mutational resistance. Harnessing an effective host antiviral response is an attractive alternative. We show that brief exposure to low, non-toxic doses of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, promptly elicits an extended antiviral state that dramatically blocks influenza A virus production. Crucially, oral administration of TG protected mice against lethal virus infection and reduced virus titres in the lungs of treated mice. TG-induced ER stress unfolded protein response appears as a key driver responsible for activating a spectrum of host antiviral defences that include an enhanced type I/III interferon response. Our findings suggest that TG is potentially a viable host-centric antiviral for the treatment of influenza A virus infection without the inherent problem of drug resistance.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H3N8 Subtype/growth & development , Thapsigargin/pharmacology , Virus Replication/drug effects , Animals , Cell Line , Chick Embryo , Chlorocebus aethiops , Dogs , Endoplasmic Reticulum Stress/drug effects , Female , Host-Pathogen Interactions/drug effects , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Influenza, Human/drug therapy , Interferon Type I/drug effects , Interferon Type I/immunology , Interferons/drug effects , Interferons/immunology , Mice , Mice, Inbred BALB C , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Swine , Unfolded Protein Response/drug effects , Vero Cells , Interferon Lambda
15.
Cancers (Basel) ; 12(9)2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32854182

ABSTRACT

Dogs develop osteosarcoma (OSA) and the disease process closely resembles that of human OSA. OSA has a poor prognosis in both species and disease-free intervals and cure rates have not improved in recent years. Gene expression in canine OSAs was compared with non-tumor tissue utilising RNA sequencing, validated by qRT-PCR and immunohistochemistry (n = 16). Polymorphic polyglutamine (polyQ) tracts in the androgen receptor (AR/NR3C4) and nuclear receptor coactivator 3 (NCOA3) genes were investigated in control and OSA patients using polymerase chain reaction (PCR), Sanger sequencing and fragment analysis (n = 1019 Rottweilers, 379 Irish Wolfhounds). Our analysis identified 1281 significantly differentially expressed genes (>2 fold change, p < 0.05), specifically 839 lower and 442 elevated gene expression in osteosarcoma (n = 3) samples relative to non-malignant (n = 4) bone. Enriched pathways and gene ontologies were identified, which provide insight into the molecular pathways implicated in canine OSA. Expression of a subset of these genes (SLC2A1, DKK3, MMP3, POSTN, RBP4, ASPN) was validated by qRTPCR and immunohistochemistry (MMP3, DKK3, SLC2A1) respectively. While little variation was found in the NCOA3 polyQ tract, greater variation was present in both polyQ tracts in the AR, but no significant associations in length were made with OSA. The data provides novel insights into the molecular mechanisms of OSA in high risk breeds. This knowledge may inform development of new prevention strategies and treatments for OSA in dogs and supports utilising spontaneous OSA in dogs to improve understanding of the disease in people.

16.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32354984

ABSTRACT

Serratia marcescens strain BTL07, which has the ability to promote growth and suppress plant diseases, was isolated from the rhizoplane of a chili plant. The draft genome sequence data of the strain will contribute to advancing our understanding of the molecular mechanisms underlying plant growth promotion and tolerance to different stresses.

17.
Gut Microbes ; 12(1): 1752605, 2020 11 09.
Article in English | MEDLINE | ID: mdl-32459982

ABSTRACT

BACKGROUND: The Central Indian gut microbiome remains grossly understudied. Herein, we sought to investigate the burden of antimicrobial resistance and diarrheal diseases, particularly Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there is widespread unregulated antibiotic use. We utilized shotgun metagenomics to comprehensively characterize the bacterial and viral fractions of the gut microbiome and their encoded functions in 105 participants. RESULTS: We observed distinct rural-urban differences in bacterial and viral populations, with geography exhibiting a greater influence than diarrheal status. Clostridioides difficile disease was more commonly observed in urban subjects, and their microbiomes were enriched in metabolic pathways relating to the metabolism of industrial compounds and genes encoding resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-associated phages enriched for carbon and amino acid energy metabolism. CONCLUSIONS: We report distinct differences in antimicrobial resistance gene profiles, enrichment of metabolic pathways and phage composition between rural and urban populations, as well as a higher burden of Clostridioides difficile disease in the urban population. Our results reveal that geography is the key driver of variation in urban and rural Indian microbiomes, with acute diarrheal disease, including C. difficile disease exerting a lesser impact. Future studies will be required to understand the potential role of dietary, cultural, and genetic factors in contributing to microbiome differences between rural and urban populations.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Diarrhea/epidemiology , Enterocolitis, Pseudomembranous/epidemiology , Gastrointestinal Microbiome/genetics , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria/virology , Carbapenems/therapeutic use , Cephalosporins/therapeutic use , Clostridioides difficile/drug effects , Clostridioides difficile/isolation & purification , Diarrhea/microbiology , Enterocolitis, Pseudomembranous/drug therapy , Female , Humans , India/epidemiology , Male , Metagenomics , Middle Aged , Rural Population , Urban Population , Young Adult
18.
J Control Release ; 321: 553-563, 2020 05 10.
Article in English | MEDLINE | ID: mdl-32087299

ABSTRACT

High transplant cell loss is a major barrier to translation of stem cell therapy for pathologies of the brain and spinal cord. Encapsulated delivery of stem cells in biomaterials for cell therapy is gaining popularity but experimental research has overwhelmingly used laboratory grade materials unsuitable for human clinical use - representing a further barrier to clinical translation. A potential solution is to use neurosurgical grade materials routinely used in clinical protocols which have an established human safety profile. Here, we tested the ability of Duragen Plus™ - a clinical biomaterial used widely in neurosurgical duraplasty procedures, to support the growth and differentiation of neural stem cells- a major transplant population being tested in clinical trials for neurological pathology. Genetic engineering of stem cells yields augmented therapeutic cells, so we further tested the ability of the Duragen Plus™ matrix to support stem cells engineered using magnetofection technology and minicircle DNA vectors- a promising cell engineering approach we previously reported (Journal of Controlled Release, 2016 a &b). The safety of the nano-engineering approach was analysed for the first time using sophisticated data-independent analysis by mass spectrometry-based proteomics. We prove that the Duragen Plus™ matrix is a promising biomaterial for delivery of stem cell transplant populations, with no adverse effects on key regenerative parameters. This advanced cellular construct based on a combinatorial nano-engineering and biomaterial encapsulation approach, could therefore offer key advantages for clinical translation.


Subject(s)
Biocompatible Materials , Neural Stem Cells , Stem Cell Transplantation , Cell Differentiation , DNA , Humans , Tissue Engineering
19.
MethodsX ; 7: 50-55, 2020.
Article in English | MEDLINE | ID: mdl-31908984

ABSTRACT

Transcriptomic analysis of single cells has been increasingly in demand in recent years, thanks to technological and methodological advances as well as growing recognition of the importance of individuals in biological systems. However, the majority of these studies have been performed in mammalian cells, due to their ease of lysis and high RNA content. No single cell transcriptomic analysis has yet been described in microbial spores, even though it is known that heterogeneity at the phenotype level exists among individual spores. Transcriptomic analysis of single spores is challenging, in part due to the physically robust nature of the spore wall. This precludes the use of methods commonly used for mammalian cells. Here, we describe a simple method for extraction and amplification of transcripts from single fungal conidia (asexual spores), and its application in single-cell transcriptomics studies. The method can also be used for studies of small numbers of fungal conidia, which may be necessary in the case of limited sample availability, low-abundance transcripts or interest in small subpopulations of conidia. •The method allows detection of transcripts from single conidia of Aspergillus niger•The method allows detection of genomic DNA from single conidia of Aspergillus niger.

20.
Nat Genet ; 52(1): 48-55, 2020 01.
Article in English | MEDLINE | ID: mdl-31844323

ABSTRACT

R-loops are nucleic acid structures formed by an RNA:DNA hybrid and unpaired single-stranded DNA that represent a source of genomic instability in mammalian cells1-4. Here we show that N6-methyladenosine (m6A) modification, contributing to different aspects of messenger RNA metabolism5,6, is detectable on the majority of RNA:DNA hybrids in human pluripotent stem cells. We demonstrate that m6A-containing R-loops accumulate during G2/M and are depleted at G0/G1 phases of the cell cycle, and that the m6A reader promoting mRNA degradation, YTHDF2 (ref. 7), interacts with R-loop-enriched loci in dividing cells. Consequently, YTHDF2 knockout leads to increased R-loop levels, cell growth retardation and accumulation of γH2AX, a marker for DNA double-strand breaks, in mammalian cells. Our results suggest that m6A regulates accumulation of R-loops, implying a role for this modification in safeguarding genomic stability.


Subject(s)
Adenosine/analogs & derivatives , DNA/chemistry , Genomic Instability , Pluripotent Stem Cells/metabolism , RNA Stability/drug effects , RNA-Binding Proteins/physiology , RNA/chemistry , Adenosine/pharmacology , Animals , DNA/drug effects , DNA/genetics , DNA Damage , Humans , Mice , Mice, Knockout , Mitosis , Pluripotent Stem Cells/cytology , RNA/drug effects , RNA/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...