Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Arthropod Struct Dev ; 80: 101360, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704965

ABSTRACT

Mate choice and male-male combat over successful mating often cause disproportionate exaggeration of male trait relative to body size. However, the exaggeration is often not the only trait involved with male-male combat and mate choice: suites of co-expressed traits may function together as a coordinated unit. When this occurs, dimorphism may be expected for these additional, non-exaggerated, structures. S. femorata males have disproportionately large hind-legs used in male-male combat over females. During the fights, fore- and mid-legs are used to keep males in positions where advantageous for leverage. Because use of the exaggerated hind-legs is coordinated with the other legs, they will coevolve as a functional unit. Here, we show that 1) S. femorata has sexual size differences in all three legs; 2) males show positive allometry in the relative sizes of all three legs; and 3) microstructures of tarsi on the fore- and mid-legs are also sexually dimorphic. Despite these differences in the tarsal microstructure, 4) adhesion forces of the tarsi had no sexual difference in flat surface. The microstructure would be specialized on attaching elytra surface. These results suggest that the three pairs of legs function together during fighting behavior, with hind-legs employed primarily for fighting, and the fore- and mid-legs functioning to grip females, keeping males positioned on the back of the female during combat.

2.
PLoS One ; 19(3): e0299796, 2024.
Article in English | MEDLINE | ID: mdl-38483942

ABSTRACT

Japanese rhinoceros beetle (Trypoxylus dichotomus) males have exaggerated horns that are used to compete for territories. Larger males with larger horns tend to win these competitions, giving them access to females. Agonistic interactions include what appears to be assessment and often end without escalating to physical combat. However, it is unknown what information competitors use to assess each other. In many insect species chemical signals can carry a range of information, including social position, nutritional state, morphology, and sex. Specifically, cuticular hydrocarbons (CHCs), which are waxes excreted on the surface of insect exoskeletons, can communicate a variety of information. Here, we asked whether CHCs in rhinoceros beetles carry information about sex, body size, and condition that could be used by males during assessment behavior. Multivariate analysis of hydrocarbon composition revealed patterns associated with both sex and body size. We suggest that Rhinoceros beetles could be communicating information through CHCs that would explain behavioral decisions.


Subject(s)
Coleoptera , Sex Characteristics , Animals , Male , Female , Coleoptera/anatomy & histology , Body Size , Perissodactyla , Hydrocarbons
3.
Curr Biol ; 33(20): 4285-4297.e5, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37734374

ABSTRACT

What limits the size of nature's most extreme structures? For weapons like beetle horns, one possibility is a tradeoff associated with mechanical levers: as the output arm of the lever system-the beetle horn-gets longer, it also gets weaker. This "paradox of the weakening combatant" could offset reproductive advantages of additional increases in weapon size. However, in contemporary populations of most heavily weaponed species, males with the longest weapons also tend to be the strongest, presumably because selection drove the evolution of compensatory changes to these lever systems that ameliorated the force reductions of increased weapon size. Therefore, we test for biomechanical limits by reconstructing the stages of weapon evolution, exploring whether initial increases in weapon length first led to reductions in weapon force generation that were later ameliorated through the evolution of mechanisms of mechanical compensation. We describe phylogeographic relationships among populations of a rhinoceros beetle and show that the "pitchfork" shaped head horn likely increased in length independently in the northern and southern radiations of beetles. Both increases in horn length were associated with dramatic reductions to horn lifting strength-compelling evidence for the paradox of the weakening combatant-and these initial reductions to horn strength were later ameliorated in some populations through reductions to horn length or through increases in head height (the input arm for the horn lever system). Our results reveal an exciting geographic mosaic of weapon size, weapon force, and mechanical compensation, shedding light on larger questions pertaining to the evolution of extreme structures.


Subject(s)
Biological Evolution , Coleoptera , Horns , Animals , Male , Biomechanical Phenomena/physiology , Coleoptera/anatomy & histology , Coleoptera/growth & development , Coleoptera/physiology , Horns/anatomy & histology , Horns/growth & development , Horns/physiology , Lifting , Sex Characteristics , Japan
4.
PLoS One ; 18(7): e0288172, 2023.
Article in English | MEDLINE | ID: mdl-37494341

ABSTRACT

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling elements in recordings of animal sounds, and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.


Subject(s)
Deep Learning , Animals , Uncertainty , Reproducibility of Results , Acoustics , Whales , Vocalization, Animal
5.
Sci Rep ; 13(1): 8735, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253792

ABSTRACT

The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism.


Subject(s)
Coleoptera , Animals , Female , Male , Coleoptera/genetics , Phenotype , Sex Characteristics
6.
bioRxiv ; 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36747788

ABSTRACT

Recordings of animal sounds enable a wide range of observational inquiries into animal communication, behavior, and diversity. Automated labeling of sound events in such recordings can improve both throughput and reproducibility of analysis. Here, we describe our software package for labeling sound elements in recordings of animal sounds and demonstrate its utility on recordings of beetle courtships and whale songs. The software, DISCO, computes sensible confidence estimates and produces labels with high precision and accuracy. In addition to the core labeling software, it provides a simple tool for labeling training data, and a visual system for analysis of resulting labels. DISCO is open-source and easy to install, it works with standard file formats, and it presents a low barrier of entry to use.

7.
BMC Ecol Evol ; 22(1): 39, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35350992

ABSTRACT

BACKGROUND: In most arthropods, adult females are larger than males, and male competition is a race to quickly locate and mate with scattered females (scramble competition polygyny). Variation in body size among males may confer advantages that depend on context. Smaller males may be favored due to more efficient locomotion leading to higher mobility during mate searching. Alternatively, larger males may benefit from increased speed and higher survivorship. While the relationship between male body size and mobility has been investigated in several systems, how different aspects of male body morphology specifically affect their locomotor performance in different contexts is often unclear. RESULTS: Using a combination of empirical measures of flight performance and modelling of body aerodynamics, we show that large body size impairs flight performance in male leaf insects (Phyllium philippinicum), a species where relatively small and skinny males fly through the canopy in search of large sedentary females. Smaller males were more agile in the air and ascended more rapidly during flight. Our models further predicted that variation in body shape would affect body lift and drag but suggested that flight costs may not explain the evolution of strong sexual dimorphism in body shape in this species. Finally, empirical measurements of substrate adhesion and subsequent modelling of landing impact forces suggested that smaller males had a lower risk of detaching from the substrates on which they walk and land. CONCLUSIONS: By showing that male body size impairs their flight and substrate adhesion performance, we provide support to the hypothesis that smaller scrambling males benefit from an increased locomotor performance and shed light on the evolution of sexual dimorphism in scramble competition mating systems.


Subject(s)
Insecta , Sexual Behavior, Animal , Animals , Body Size , Female , Male , Plant Leaves , Sex Characteristics
8.
Curr Opin Insect Sci ; 51: 100901, 2022 06.
Article in English | MEDLINE | ID: mdl-35301164

ABSTRACT

The exaggerated horns of beetles are attractive models for studying the origin of novel traits and morphological evolution. Closely related species often differ profoundly in the size, number, and shape of their horns, and in the body region from which they extend. In addition, beetle horns exhibit exquisite nutrition-dependent phenotypic plasticity, leading to disproportionate growth of the horns in the largest, best-condition individuals and much smaller - even stunted - horn sizes in poor-condition individuals. These exciting phenomena in beetle horns have recently been revealed at the molecular level with the advent of next-generation sequencing. This section reviews the latest research on a horned beetle, the Japanese rhinoceros beetle Trypoxylus dichotomus, whose genome was recently sequenced.


Subject(s)
Coleoptera , Animals , Coleoptera/anatomy & histology , High-Throughput Nucleotide Sequencing , Japan , Perissodactyla/genetics , Sex Characteristics , Technology
9.
Proc Biol Sci ; 289(1966): 20212512, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35016539

ABSTRACT

Ecologists have long sought to understand space use and mechanisms underlying patterns observed in nature. We developed an optimality landscape and mechanistic territory model to understand mechanisms driving space use and compared model predictions to empirical reality. We demonstrate our approach using grey wolves (Canis lupus). In the model, simulated animals selected territories to economically acquire resources by selecting patches with greatest value, accounting for benefits, costs and trade-offs of defending and using space on the optimality landscape. Our approach successfully predicted and explained first- and second-order space use of wolves, including the population's distribution, territories of individual packs, and influences of prey density, competitor density, human-caused mortality risk and seasonality. It accomplished this using simple behavioural rules and limited data to inform the optimality landscape. Results contribute evidence that economical territory selection is a mechanistic bridge between space use and animal distribution on the landscape. This approach and resulting gains in knowledge enable predicting effects of a wide range of environmental conditions, contributing to both basic ecological understanding of natural systems and conservation. We expect this approach will demonstrate applicability across diverse habitats and species, and that its foundation can help continue to advance understanding of spatial behaviour.


Subject(s)
Carnivora , Wolves , Animals , Ecosystem , Territoriality
10.
Evolution ; 75(2): 394-413, 2021 02.
Article in English | MEDLINE | ID: mdl-33009663

ABSTRACT

Exaggerated weapons of sexual selection often diverge more rapidly and dramatically than other body parts, suggesting that relevant agents of selection may be discernible in contemporary populations. We examined the ecology, reproductive behavior, and strength of sexual selection on horn length in five recently diverged rhinoceros beetle (Trypoxylus dichotomus) populations that differ in relative horn size. Males with longer horns were better at winning fights in all locations, but the link between winning fights and mating success differed such that selection favored large males with long horns at the two long-horned populations, but was relaxed or nonexistent at the populations with relatively shorter horns. Observations of local habitat conditions and breeding ecology point to shifts in the relative abundance of feeding territories as the most likely cause of population differences in selection on male weapon size in this species. Comparisons of ecological conditions and selection strength across populations offer critical first steps toward meaningfully linking mating system dynamics, selection patterns, and diversity in sexually selected traits.


Subject(s)
Coleoptera/anatomy & histology , Sex Characteristics , Sexual Behavior, Animal , Sexual Selection , Animals , Coleoptera/genetics , Female , Male , Population Density , Territoriality
11.
Behav Processes ; 181: 104263, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33049376

ABSTRACT

The habitat and resource use of females critically affects their pattern of distribution and consequently their monoposibility by males and the mating system of a species. Shifts in habitat use are therefore likely to be associated with changes in mating system and sexual selection acting on males' phenotypes, consequently affecting patterns of sexual dimorphism. Although sexual dimorphism is often correlated with shifts in habitat use at the macroevolutionary scale, the underlying microevolutionary processes involved are typically unclear. Here, we used the New Guinean stick insect genus Eurycantha to investigate how changes in habitat use and mating system were associated with a change in sexual dimorphism seen specifically in the thorny devil stick insects (Eurycantha calcarata and Eurycantha horrida). Male thorny devils display sexually dimorphic and enlarged hindlegs endowed with a sharp spine. Sexual size dimorphism is also very reduced in these species relative to other phasmids. Using field observations, morphological measurements and radiotelemetry, we investigated changes in mating system associated with the reduction of sexual dimorphism and tested predictions from the hypothesis that sexual selection drove the evolution of this unusual male morphology. We found that thorny devils switched from solitary roosting in the canopy during the day to communal roosting inside cavities of a few host trees, shifting the distribution of females from scattered to clumped. Male thorny devils used their large hindlegs to fight with rivals for positions on the tree close to cavities containing females, and larger males were associated with cavities containing relatively more females. In contrast, the sister species, Eurycantha insularis, displays relatively small and unarmoured males (ancestral state). Adult female E. insularis were always scattered in the canopy, and this species displayed a scramble competition mating system typical of other phasmids, where mobility, rather than fighting ability, is probably critical to males' reproductive success. Overall, our study illustrates how a drastic change in sexual dimorphism can be associated with a switch from solitary to communal roosting and from a scramble competition to a defense-based polygyny mating system.


Subject(s)
Sex Characteristics , Sexual Behavior, Animal , Animals , Ecosystem , Female , Insecta , Male , Reproduction
12.
Proc Biol Sci ; 287(1928): 20200254, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32517625

ABSTRACT

A current evolutionary hypothesis predicts that the most extreme forms of animal weaponry arise in systems where combatants fight each other one-to-one, in duels. It has also been suggested that arms races in human interstate conflicts are more likely to escalate in cases where there are only two opponents. However, directly testing whether duels matter for weapon investment is difficult in animals and impossible in interstate conflicts. Here, we test whether superior combatants experience a disproportionate advantage in duels, as compared with multi-combatant skirmishes, in a system analogous to both animal and military contests: the battles fought by artificial intelligence agents in a computer war game. We found that combatants with experimentally improved fighting power had a large advantage in duels, but that this advantage deteriorated as the complexity of the battlefield was increased by the addition of further combatants. This pattern remained under the two different forms of the advantage granted to our focal artificial intelligence (AI) combatants, and became reversed when we switched the roles to feature a weak focal AI among strong opponents. Our results suggest that one-on-one combat may trigger arms races in diverse systems. These results corroborate the outcomes of studies of both animal and interstate contests, and suggest that elements of animal contest theory may be widely applicable to arms races generally.


Subject(s)
Aggression , Behavior, Animal , Competitive Behavior , Animals , Artificial Intelligence , Biological Evolution , Cybernetics , Weapons
13.
Proc Biol Sci ; 286(1905): 20191063, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31238851

ABSTRACT

Sexually selected weapons often function as honest signals of fighting ability. If poor-quality individuals produce high-quality weapons, then receivers should focus on other, more reliable signals. Cost is one way to maintain signal integrity. The costs of weapons tend to increase with relative weapon size, and thereby restrict large weapons to high-quality individuals who can produce and maintain them. Weapon cost, however, appears to be unpredictably variable both within and across taxa, and the mechanisms underlying this variation remain unclear. We suggest variation in weapon cost may result from variation in weapon composition-specifically, differences in the amount of muscle mass directly associated with the weapon. We test this idea by measuring the metabolic cost of sexually selected weapons in seven arthropod species and relating these measures to weapon muscle mass. We show that individuals with relatively large weapon muscles have disproportionately high resting metabolic rates and provide evidence that this trend is driven by weapon muscle mass. Overall, our results suggest that variation in weapon cost can be partially explained by variation in weapon morphology and that the integrity of weapon signals may be maintained by increased metabolic cost in species with relatively high weapon muscle mass.


Subject(s)
Arthropods/physiology , Muscles , Sexual Behavior , Animals , Phenotype , Weapons
14.
PLoS Genet ; 14(10): e1007651, 2018 10.
Article in English | MEDLINE | ID: mdl-30286074

ABSTRACT

Beetle horns are attractive models for studying the evolution of novel traits, as they display diverse shapes, sizes, and numbers among closely related species within the family Scarabaeidae. Horns radiated prolifically and independently in two distant subfamilies of scarabs, the dung beetles (Scarabaeinae), and the rhinoceros beetles (Dynastinae). However, current knowledge of the mechanisms underlying horn diversification remains limited to a single genus of dung beetles, Onthophagus. Here we unveil 11 horn formation genes in a rhinoceros beetle, Trypoxylus dichotomus. These 11 genes are mostly categorized as larval head- and appendage-patterning genes that also are involved in Onthophagus horn formation, suggesting the same suite of genes was recruited in each lineage during horn evolution. Although our RNAi analyses reveal interesting differences in the functions of a few of these genes, the overwhelming conclusion is that both head and thoracic horns develop similarly in Trypoxylus and Onthophagus, originating in the same developmental regions and deploying similar portions of appendage patterning networks during their growth. Our findings highlight deep parallels in the development of rhinoceros and dung beetle horns, suggesting either that both horn types arose in the common ancestor of all scarabs, a surprising reconstruction of horn evolution that would mean the majority of scarab species (~35,000) actively repress horn growth, or that parallel origins of these extravagant structures resulted from repeated co-option of the same underlying developmental processes.


Subject(s)
Coleoptera/genetics , Larva/genetics , Animals , Biological Evolution , Gene Expression Regulation, Developmental/genetics , Horns/anatomy & histology , Horns/embryology , Phenotype , RNA Interference , Species Specificity
15.
Nat Ecol Evol ; 2(10): 1619-1625, 2018 10.
Article in English | MEDLINE | ID: mdl-30177803

ABSTRACT

Sexually selected weapons evolved to maximize the individual reproductive success of males in many polygynous breeding species. Many weapons are also retained outside of reproductive periods for secondary reasons, but the importance of these secondary functions is poorly understood. Here we leveraged a unique opportunity from the predator-prey system in northern Yellowstone National Park, WY, USA to evaluate whether predation by a widespread, coursing predator (wolves) has influenced a specific weapon trait (antler retention time) in their primary cervid prey (elk). Male elk face a trade-off: individuals casting antlers early begin regrowth before other males, resulting in relatively larger antlers the following year, and thus greater reproductive success, as indicated by research with red deer. We show, however, that male elk that cast their antlers early are preferentially hunted and killed by wolves, despite early casters being in better nutritional condition than antlered individuals. Our results run counter to classic expectations of coursing predators preferring poorer-conditioned individuals, and in so doing, reveal an important secondary function for an exaggerated sexually selected weapon-predatory deterrence. We suggest this secondary function played a key evolutionary role in elk; uniquely among North American cervids, they retain their antlers long after they fulfil their primary role in reproduction.


Subject(s)
Antlers/physiology , Deer/physiology , Food Chain , Predatory Behavior , Wolves/physiology , Animals , Antlers/growth & development , Deer/growth & development , Female , Male , Parks, Recreational , Wyoming
16.
Evolution ; 71(11): 2584-2598, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28841226

ABSTRACT

Biologists have been fascinated with the extreme products of sexual selection for decades. However, relatively few studies have characterized patterns of selection acting on ornaments and weapons in the wild. Here, we measure selection on a wild population of weapon-bearing beetles (frog-legged leaf beetles: Sagra femorata) for two consecutive breeding seasons. We consider variation in both weapon size (hind leg length) and in relative weapon size (deviations from the population average scaling relationship between hind leg length and body size), and provide evidence for directional selection on weapon size per se and stabilizing selection on a particular scaling relationship in this population. We suggest that whenever growth in body size is sensitive to external circumstance such as nutrition, then considering deviations from population-level scaling relationships will better reflect patterns of selection relevant to evolution of the ornament or weapon than will variation in trait size per se. This is because trait-size versus body-size scaling relationships approximate underlying developmental reaction norms relating trait growth with body condition in these species. Heightened condition-sensitive expression is a hallmark of the exaggerated ornaments and weapons favored by sexual selection, yet this plasticity is rarely reflected in the way we think about-and measure-selection acting on these structures in the wild.


Subject(s)
Animal Shells/growth & development , Coleoptera/genetics , Genetic Variation , Selection, Genetic , Animals , Body Size/genetics , Coleoptera/growth & development , Evolution, Molecular , Extremities/growth & development , Quantitative Trait, Heritable
17.
Dev Biol ; 422(1): 24-32, 2017 02 01.
Article in English | MEDLINE | ID: mdl-27989519

ABSTRACT

One of the defining features of the evolutionary success of insects is the morphological diversification of their appendages, especially mouthparts. Although most insects share a common mouthpart ground plan, there is remarkable diversity in the relative size and shapes of these appendages among different insect lineages. One of the most prominent examples of mouthpart modification can be found in the enlargement of mandibles in stag beetles (Coleoptera, Insecta). In order to understand the proximate mechanisms of mouthpart modification, we investigated the function of appendage-patterning genes in mandibular enlargement during extreme growth of the sexually dimorphic mandibles of the stag beetle Cyclommatus metallifer. Based on knowledge from Drosophila and Tribolium studies, we focused on seven appendage patterning genes (Distal-less (Dll), aristaless (al), dachshund (dac), homothorax (hth), Epidermal growth factor receptor (Egfr), escargot (esg), and Keren (Krn). In order to characterize the developmental function of these genes, we performed functional analyses by using RNA interference (RNAi). Importantly, we found that RNAi knockdown of dac resulted in a significant mandible size reduction in males but not in female mandibles. In addition to reducing the size of mandibles, dac knockdown also resulted in a loss of the serrate teeth structures on the mandibles of males and females. We found that al and hth play a significant role during morphogenesis of the large male-specific inner mandibular tooth. On the other hand, knockdown of the distal selector gene Dll did not affect mandible development, supporting the hypothesis that mandibles likely do not contain the distal-most region of the ancestral appendage and therefore co-option of Dll expression is unlikely to be involved in mandible enlargement in stag beetles. In addition to mandible development, we explored possible roles of these genes in controlling the divergent antennal morphology of Coleoptera.


Subject(s)
Body Patterning/genetics , Coleoptera/embryology , Mandible/embryology , Sex Characteristics , Animals , Biological Evolution , ErbB Receptors/physiology , Female , Insect Proteins/genetics , Insect Proteins/physiology , Male , Sex Determination Processes
18.
J Therm Biol ; 62(Pt A): 76-83, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27839554

ABSTRACT

Do insect larvae ever self-heat significantly from their own metabolic activity and, if so, under what sets of environmental temperatures and across what ranges of body size? We examine these questions using larvae of the Japanese rhinoceros beetle (Trypoxylus dichotomus), chosen for their large size (>20g), simple body plan, and underground lifestyle. Using CO2 respirometry, we measured larval metabolic rates then converted measured rates of gas exchange into rates of heat production and developed a mathematical model to predict how much steady state body temperatures of underground insects would increase above ambient depending on body size. Collectively, our results suggest that large, extant larvae (20-30g body mass) can self-heat by at most 2°C, and under many common conditions (shallow depths, moister soils) would self-heat by less than 1°C. By extending the model to even larger (hypothetical) body sizes, we show that underground insects with masses >1kg could heat, in warm, dry soils, by 1.5-6°C or more. Additional experiments showed that larval critical thermal maxima (CTmax) were in excess of 43.5°C and that larvae could behaviorally thermoregulate on a thermal gradient bar. Together, these results suggest that large larvae living underground likely regulate their temperatures primarily using behavior; self-heating by metabolism likely contributes little to their heat budgets, at least in most common soil conditions.


Subject(s)
Body Temperature Regulation , Body Temperature , Coleoptera/physiology , Larva/physiology , Animals , Body Size , Coleoptera/metabolism , Larva/metabolism , Models, Biological , Temperature
19.
Trends Ecol Evol ; 31(10): 742-751, 2016 10.
Article in English | MEDLINE | ID: mdl-27475833

ABSTRACT

The elaboration and diversification of sexually selected weapons remain poorly understood. We argue that progress in this topic has been hindered by a strong bias in sexual selection research, and a tendency for weapons to be conflated with ornaments used in mate choice. Here, we outline how male-male competition and female choice are distinct mechanisms of sexual selection, and why weapons and ornaments are fundamentally different types of traits. We call for research on the factors contributing to weapon divergence, the potential for male-male competition to drive speciation, and the specific use of weapons in the context of direct fights versus displays. Given that weapons are first and foremost fighting structures, biomechanical approaches are an especially promising direction for understanding weapon design.


Subject(s)
Phenotype , Selection, Genetic , Sexual Behavior , Animals , Female , Male
20.
Int J Biol Sci ; 12(5): 607-16, 2016.
Article in English | MEDLINE | ID: mdl-27143957

ABSTRACT

Crowding and changes in food availability are two critical environmental conditions that impact an animal's trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects.


Subject(s)
Animal Migration/physiology , Hemiptera/physiology , Reproduction/physiology , Signal Transduction/physiology , Animals , Female , Hemiptera/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Wings, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...