Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Neural Comput ; : 1-46, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38776965

ABSTRACT

In computational neuroscience, multicompartment models are among the most biophysically realistic representations of single neurons. Constructing such models usually involves the use of the patch-clamp technique to record somatic voltage signals under different experimental conditions. The experimental data are then used to fit the many parameters of the model. While patching of the soma is currently the gold-standard approach to build multicompartment models, several studies have also evidenced a richness of dynamics in dendritic and axonal sections. Recording from the soma alone makes it hard to observe and correctly parameterize the activity of nonsomatic compartments. In order to provide a richer set of data as input to multicompartment models, we here investigate the combination of somatic patch-clamp recordings with recordings of high-density microelectrode arrays (HD-MEAs). HD-MEAs enable the observation of extracellular potentials and neural activity of neuronal compartments at subcellular resolution. In this work, we introduce a novel framework to combine patch-clamp and HD-MEA data to construct multicompartment models. We first validate our method on a ground-truth model with known parameters and show that the use of features extracted from extracellular signals, in addition to intracellular ones, yields models enabling better fits than using intracellular features alone. We also demonstrate our procedure using experimental data by constructing cell models from in vitro cell cultures. The proposed multimodal fitting procedure has the potential to augment the modeling efforts of the computational neuroscience community and provide the field with neuronal models that are more realistic and can be better validated.

2.
Clin Immunol ; 257: 109845, 2023 12.
Article in English | MEDLINE | ID: mdl-37995947

ABSTRACT

BACKGROUND AND OBJECTIVES: COVID-19-associated coagulopathy, shown to increase the risk for the occurrence of thromboses and microthromboses, displays phenotypic features of the antiphospholipid syndrome (APS), a prototype antibody-mediated autoimmune disease. Several groups have reported elevated levels of criteria and non-criteria antiphospholipid antibodies (aPL), assumed to cause APS, during acute or post-acute COVID-19. However, disease heterogeneity of COVID-19 is accompanied by heterogeneity in molecular signatures, including aberrant cytokine profiles and an increased occurrence of autoantibodies. Moreover, little is known about the association between autoantibodies and the clinical events. Here, we first aim to characterise the antiphospholipid antibody, anti-SARS-CoV-2 antibody, and the cytokine profiles in a diverse collective of COVID-19 patients (disease severity: asymptomatic to intensive care), using vaccinated individuals and influenza patients as comparisons. We then aim to assess whether the presence of aPL in COVID-19 is associated with an increased incidence of thrombotic events in COVID-19. METHODS AND RESULTS: We conducted anti-SARS-CoV-2 IgG and IgA microELISA and IgG, IgA, and IgM antiphospholipid line immunoassay (LIA) against 10 criteria and non-criteria antigens in 155 plasma samples of 124 individuals, and we measured 16 cytokines and chemokines in 112 plasma samples. We additionally employed clinical and demographic parameters to conduct multivariable regression analyses within multiple paradigms. In line with recent results, we find that IgM autoantibodies against annexin V (AnV), ß2-glycoprotein I (ß2GPI), and prothrombin (PT) are enriched upon infection with SARS-CoV-2. There was no evidence for seroconversion from IgM to IgG or IgA. PT, ß2GPI, and AnV IgM as well as cardiolipin (CL) IgG antiphospholipid levels were significantly elevated in the COVID-19 but not in the influenza or control groups. They were associated predominantly with the strength of the anti-SARS-CoV-2 antibody titres and the major correlate for thromboses was SARS-CoV-2 disease severity. CONCLUSION: While we have recapitulated previous findings, we conclude that the presence of the aPL, most notably PT, ß2GPI, AnV IgM, and CL IgG in COVID-19 are not associated with a higher incidence of thrombotic events.


Subject(s)
Antiphospholipid Syndrome , COVID-19 , Influenza, Human , Thrombosis , Humans , Antibodies, Antiphospholipid , COVID-19/complications , SARS-CoV-2 , Antibodies, Anticardiolipin , beta 2-Glycoprotein I , Immunoglobulin G , Prothrombin , Immunoglobulin A , Immunoglobulin M , Cytokines
3.
Front Neuroinform ; 16: 957255, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36221258

ABSTRACT

Despite being composed of highly plastic neurons with extensive positive feedback, the nervous system maintains stable overall function. To keep activity within bounds, it relies on a set of negative feedback mechanisms that can induce stabilizing adjustments and that are collectively termed "homeostatic plasticity." Recently, a highly excitable microdomain, located at the proximal end of the axon-the axon initial segment (AIS)-was found to exhibit structural modifications in response to activity perturbations. Though AIS plasticity appears to serve a homeostatic purpose, many aspects governing its expression and its functional role in regulating neuronal excitability remain elusive. A central challenge in studying the phenomenon is the rich heterogeneity of its expression (distal/proximal relocation, shortening, lengthening) and the variability of its functional role. A potential solution is to track AISs of a large number of neurons over time and attempt to induce structural plasticity in them. To this end, a promising approach is to use extracellular electrophysiological readouts to track a large number of neurons at high spatiotemporal resolution by means of high-density microelectrode arrays (HD-MEAs). However, an analysis framework that reliably identifies specific activity signatures that uniquely map on to underlying microstructural changes is missing. In this study, we assessed the feasibility of such a task and used the distal relocation of the AIS as an exemplary problem. We used sophisticated computational models to systematically explore the relationship between incremental changes in AIS positions and the specific consequences observed in simulated extracellular field potentials. An ensemble of feature changes in the extracellular fields that reliably characterize AIS plasticity was identified. We trained models that could detect these signatures with remarkable accuracy. Based on these findings, we propose a hybrid analysis framework that could potentially enable high-throughput experimental studies of activity-dependent AIS plasticity using HD-MEAs.

4.
ACS Sens ; 7(10): 3181-3191, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36166837

ABSTRACT

Pharmaceutical compounds may have cardiotoxic properties, triggering potentially life-threatening arrhythmias. To investigate proarrhythmic effects of drugs, the patch clamp technique has been used as the gold standard for characterizing the electrophysiology of cardiomyocytes in vitro. However, the applicability of this technology for drug screening is limited, as it is complex to use and features low throughput. Recent studies have demonstrated that 3D-nanostructured electrodes enable to obtain intracellular signals from many cardiomyocytes in parallel; however, the tedious electrode fabrication and limited measurement duration still remain major issues for cardiotoxicity testing. Here, we demonstrate how porous Pt-black electrodes, arranged in high-density microelectrode arrays, can be used to record intracellular-like signals of cardiomyocytes at large scale repeatedly over an extended period of time. The developed technique, which yields highly parallelized electroporations using stimulation voltages around 1 V peak-to-peak amplitude, enabled intracellular-like recordings at high success rates without causing significant alteration in key electrophysiological features. In a proof-of-concept study, we investigated electrophysiological modulations induced by two clinically applied drugs, nifedipine and quinidine. As the obtained results were in good agreement with previously published data, we are confident that the developed technique has the potential to be routinely used in in vitro platforms for cardiotoxicity screening.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac , Cardiotoxicity , Microelectrodes , Drug Evaluation, Preclinical/methods
5.
J Neural Eng ; 19(2)2022 03 31.
Article in English | MEDLINE | ID: mdl-35234667

ABSTRACT

Objective:Neurons communicate with each other by sending action potentials (APs) through their axons. The velocity of axonal signal propagation describes how fast electrical APs can travel. This velocity can be affected in a human brain by several pathologies, including multiple sclerosis, traumatic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The high density of the recording electrodes enables to image the activity of individual neurons down to subcellular resolution, which includes the propagation of axonal signals. However, axon reconstruction, to date, mainly relies on manual approaches to select the electrodes and channels that seemingly record the signals along a specific axon, while an automated approach to track multiple axonal branches in extracellular action-potential recordings is still missing.Approach:In this article, we propose a fully automated approach to reconstruct axons from extracellular electrical-potential landscapes, so-called 'electrical footprints' of neurons. After an initial electrode and channel selection, the proposed method first constructs a graph based on the voltage signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal branches. Finally, the axonal branches are pruned, and axonal action-potential propagation velocities are computed.Main results:We first validate our method using simulated data from detailed reconstructions of neurons, showing that our approach is capable of accurately reconstructing axonal branches. We then apply the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used to determine axonal morphologies and signal-propagation velocities at high throughput.Significance:We introduce a fully automated method to reconstruct axonal branches and estimate axonal action-potential propagation velocities using HD-MEA recordings. Our method yields highly reliable and reproducible velocity estimations, which constitute an important electrophysiological feature of neuronal preparations.


Subject(s)
Axons , Neurons , Action Potentials/physiology , Axons/physiology , Brain/physiology , Humans , Microelectrodes , Neurons/physiology
7.
Front Neuroinform ; 16: 1032538, 2022.
Article in English | MEDLINE | ID: mdl-36713289

ABSTRACT

Modern Graph Neural Networks (GNNs) provide opportunities to study the determinants underlying the complex activity patterns of biological neuronal networks. In this study, we applied GNNs to a large-scale electrophysiological dataset of rodent primary neuronal networks obtained by means of high-density microelectrode arrays (HD-MEAs). HD-MEAs allow for long-term recording of extracellular spiking activity of individual neurons and networks and enable the extraction of physiologically relevant features at the single-neuron and population level. We employed established GNNs to generate a combined representation of single-neuron and connectivity features obtained from HD-MEA data, with the ultimate goal of predicting changes in single-neuron firing rate induced by a pharmacological perturbation. The aim of the main prediction task was to assess whether single-neuron and functional connectivity features, inferred under baseline conditions, were informative for predicting changes in neuronal activity in response to a perturbation with Bicuculline, a GABA A receptor antagonist. Our results suggest that the joint representation of node features and functional connectivity, extracted from a baseline recording, was informative for predicting firing rate changes of individual neurons after the perturbation. Specifically, our implementation of a GNN model with inductive learning capability (GraphSAGE) outperformed other prediction models that relied only on single-neuron features. We tested the generalizability of the results on two additional datasets of HD-MEA recordings-a second dataset with cultures perturbed with Bicuculline and a dataset perturbed with the GABA A receptor antagonist Gabazine. GraphSAGE models showed improved prediction accuracy over other prediction models. Our results demonstrate the added value of taking into account the functional connectivity between neurons and the potential of GNNs to study complex interactions between neurons.

8.
PLoS Pathog ; 17(12): e1010118, 2021 12.
Article in English | MEDLINE | ID: mdl-34860860

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/immunology , Prothrombin/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cell Communication/immunology , Humans , Risk Factors , Severity of Illness Index
9.
Cereb Cortex ; 31(1): 32-47, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32829414

ABSTRACT

GABAergic interneurons in different cortical areas play important roles in diverse higher-order cognitive functions. The heterogeneity of interneurons is well characterized in different sensory cortices, in particular in primary somatosensory and visual cortex. However, the structural and functional properties of the medial prefrontal cortex (mPFC) interneurons have received less attention. In this study, a cluster analysis based on axonal projection patterns revealed four distinct clusters of L6 interneurons in rat mPFC: Cluster 1 interneurons showed axonal projections similar to Martinotti-like cells extending to layer 1, cluster 2 displayed translaminar projections mostly to layer 5, and cluster 3 interneuron axons were confined to the layer 6, whereas those of cluster 4 interneurons extend also into the white matter. Correlations were found between neuron location and axonal distribution in all clusters. Moreover, all cluster 1 L6 interneurons showed a monotonically adapting firing pattern with an initial high-frequency burst. All cluster 2 interneurons were fast-spiking, while neurons in cluster 3 and 4 showed heterogeneous firing patterns. Our data suggest that L6 interneurons that have distinct morphological and physiological characteristics are likely to innervate different targets in mPFC and thus play differential roles in the L6 microcircuitry and in mPFC-associated functions.


Subject(s)
Interneurons/physiology , Nerve Net/cytology , Nerve Net/physiology , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Action Potentials , Animals , Axons/physiology , Cell Membrane/physiology , Electrophysiological Phenomena , GABAergic Neurons/physiology , Image Processing, Computer-Assisted , Male , Patch-Clamp Techniques , Rats , Rats, Wistar , White Matter/cytology
10.
Article in English | MEDLINE | ID: mdl-31294423

ABSTRACT

In recent electrophysiological studies, CMOS-based high-density microelectrode arrays (HD-MEA) have been widely used for studies of both in-vitro and in-vivo neuronal signals and network behavior. Yet, an open issue in MEA design concerns the tradeoff between signal-to-noise ratio (SNR) and number of readout channels. Here we present a new HD-MEA design in 0.18 µm CMOS technology, consisting of 19,584 electrodes at a pitch of 18.0 µm. By combing two readout structures, namely active-pixel-sensor (APS) and switch-matrix (SM) on a single chip, the dual-mode HD-MEA is capable of recording simultaneously from the entire array and achieving high signal-to-noise-ratio recordings on a subset of electrodes. The APS readout circuits feature a noise level of 10.9 µVrms for the action potential band (300 Hz - 5 kHz), while the noise level for the switch-matrix readout is 3.1 µVrms.

11.
Front Cell Neurosci ; 13: 159, 2019.
Article in English | MEDLINE | ID: mdl-31118887

ABSTRACT

Axons convey information in neuronal circuits via reliable conduction of action potentials (APs) from the axon initial segment (AIS) to the presynaptic terminals. Recent experimental findings increasingly evidence that the axonal function is not limited to the simple transmission of APs. Advances in subcellular-resolution recording techniques have shown that axons display activity-dependent modulation in spike shape and conduction velocity, which influence synaptic strength and latency. We briefly review here, how recent methodological developments facilitate the understanding of the axon physiology. We included the three most common methods, i.e., genetically encoded voltage imaging (GEVI), subcellular patch-clamp and high-density microelectrode arrays (HD-MEAs). We then describe the potential of using HD-MEAs in studying axonal physiology in more detail. Due to their robustness, amenability to high-throughput and high spatiotemporal resolution, HD-MEAs can provide a direct functional electrical readout of single cells and cellular ensembles at subcellular resolution. HD-MEAs can, therefore, be employed in investigating axonal pathologies, the effects of large-scale genomic interventions (e.g., with RNAi or CRISPR) or in compound screenings. A combination of extracellular microelectrode arrays (MEAs), intracellular microelectrodes and optical imaging may potentially reveal yet unexplored repertoires of axonal functions.

12.
Cereb Cortex ; 28(4): 1439-1457, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29329401

ABSTRACT

GABAergic interneurons are notorious for their heterogeneity, despite constituting a small fraction of the neuronal population in the neocortex. Classification of interneurons is crucial for understanding their widespread cortical functions as they provide a complex and dynamic network, balancing excitation and inhibition. Here, we investigated different types of non-fast-spiking (nFS) interneurons in Layer 4 (L4) of rat barrel cortex using whole-cell patch-clamp recordings with biocytin-filling. Based on a quantitative analysis on a combination of morphological and electrophysiological parameters, we identified 5 distinct types of L4 nFS interneurons: 1) trans-columnar projecting interneurons, 2) locally projecting non-Martinotti-like interneurons, 3) supra-granular projecting Martinotti-like interneurons, 4) intra-columnar projecting VIP-like interneurons, and 5) locally projecting neurogliaform-like interneurons. Trans-columnar projecting interneurons are one of the most striking interneuron types, which have not been described so far in Layer 4. They feature extensive axonal collateralization not only in their home barrel but also in adjacent barrels. Furthermore, we identified that most of the L4 nFS interneurons express somatostatin, while few are positive for the transcription factor Prox1. The morphological and electrophysiological characterization of different L4 nFS interneuron types presented here provides insights into their synaptic connectivity and functional role in cortical information processing.


Subject(s)
Cerebral Cortex/cytology , GABAergic Neurons/physiology , Membrane Potentials/physiology , Nerve Net/physiology , Animals , Animals, Newborn , Axons/physiology , Dendrites/physiology , Female , Imaging, Three-Dimensional , In Vitro Techniques , Lysine/analogs & derivatives , Lysine/metabolism , Male , Models, Neurological , Patch-Clamp Techniques , Principal Component Analysis , Rats , Vasoactive Intestinal Peptide/metabolism
13.
Neuroscience ; 368: 132-151, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28528964

ABSTRACT

Recent years have seen substantial progress in studying the structural and functional properties of GABAergic interneurons and their roles in the neuronal networks of barrel cortex. Although GABAergic interneurons represent only about 12% of the total number of neocortical neurons, they are extremely diverse with respect to their structural and functional properties. It has become clear that barrel cortex interneurons not only serve the maintenance of an appropriate excitation/inhibition balance but also are directly involved in sensory processing. In this review we present different interneuron types and their axonal projection pattern framework in the context of the laminar and columnar organization of the barrel cortex. The main focus is here on the most prominent interneuron types, i.e. basket cells, chandelier cells, Martinotti cells, bipolar/bitufted cells and neurogliaform cells, but interneurons with more unusual axonal domains will also be mentioned. We describe their developmental origin, their classification with respect to molecular, morphological and intrinsic membrane and synaptic properties. Most importantly, we will highlight the most prominent circuit motifs these interneurons are involved in and in which way they serve feed-forward inhibition, feedback inhibition and disinhibition. Finally, this will be put into context to their functional roles in sensory signal perception and processing in the whisker system and beyond.


Subject(s)
Axons/physiology , GABAergic Neurons/physiology , Interneurons/physiology , Neural Inhibition/physiology , Somatosensory Cortex/physiology , Animals , GABAergic Neurons/classification , Interneurons/classification , Somatosensory Cortex/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...