ABSTRACT
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) based on micro/nanostructured materials with different natures has received increasing attention for the analysis of a wide variety of analytes. However, up to now, only a few studies have shown the application of simple platforms in MALDI-MS for the identification of intact proteins. The present work reports on the application of copper oxide particles (Cu2O PS), obtained by a greener route, in combination with low amounts of 2,5-dihydroxybenzoic acid (DHB) as a novel hybrid platform. The combined Cu2O PS@DHB matrix, containing only 2.5 mg mL-1 of particles and 10 mg mL-1 of DHB, was easily applicable in MALDI-MS without surface modification of target plates. Under optimal conditions, the analysis of intact proteins up to 150,000 Da was possible, including immunoglobulin G, bovine serum albumin, and cytochrome C with adequate spot-to-spot signal reproducibility (RSD < 10%). In addition, the analysis of glycopeptides from IgG digests was carried out to prove the multipurpose application of the Cu2O PS@DHB platform in the low m/z range (2500-3000 Da). From the obtained results, it can be concluded that the optical and surface properties of as-synthesized Cu2O PS are likely to be responsible for the superior performance of Cu2O PS@DHB in comparison with conventional matrices. In this sense, the proposed user-friendly methodology opens up the prospect for possible implementation in bioanalysis and diagnostic research.
Subject(s)
Copper , Glycopeptides , Hydroxybenzoates , Reproducibility of Results , Gentisates/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Proteins/analysis , Lasers , OxidesABSTRACT
A simple CE-UV method was developed for the simultaneous determination of ciprofloxacin, norfloxacin, and ofloxacin in milk samples. The optimum separation was obtained using a 20 mM ammonium dihydrogenphosphate solution with 2 mM cetyltrimethylammonium bromide at pH 3.0 as the BGE. Satisfactory resolution for structurally very similar analytes, like norfloxacin and ciprofloxacin, was achieved without including any organic solvent. Milk samples were prepared using a simple/extraction procedure based on acidic protein precipitation followed by an SPE step using only 5 mg of multiwalled carbon nanotubes as the sorbent material. The LODs for the three compounds were between 7.5 and 11.6 µg/L and the RSDs for the peak areas were between 2.6 and 4.9%. The complete method was applied to spiked real milk samples with satisfactory recoveries for all analytes (84-106%).