Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(6): 1084-1097, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35045985

ABSTRACT

Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE: Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.


Subject(s)
Prostatic Neoplasms , Proteomics , Animals , Cell Line, Tumor , Epithelial Cell Adhesion Molecule , Humans , Male , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
2.
Proc Natl Acad Sci U S A ; 116(12): 5223-5232, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819896

ABSTRACT

Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.


Subject(s)
Carcinogenesis/metabolism , Prolactin/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/physiology , Stromal Cells/metabolism , Animals , Carcinogenesis/drug effects , Celecoxib/pharmacology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Dinoprostone/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Mice , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Prostatic Neoplasms/drug therapy , Retinoid X Receptors/metabolism , Signal Transduction/drug effects , Stromal Cells/drug effects , Stromal Cells/pathology , Up-Regulation/drug effects , Up-Regulation/physiology
3.
Cancer Discov ; 8(3): 288-303, 2018 03.
Article in English | MEDLINE | ID: mdl-29301747

ABSTRACT

Blood-based biomarkers are critical in metastatic prostate cancer, where characteristic bone metastases are not readily sampled, and they may enable risk stratification in localized disease. We established a sensitive and high-throughput strategy for analyzing prostate circulating tumor cells (CTC) using microfluidic cell enrichment followed by digital quantitation of prostate-derived transcripts. In a prospective study of 27 patients with metastatic castration-resistant prostate cancer treated with first-line abiraterone, pretreatment elevation of the digital CTCM score identifies a high-risk population with poor overall survival (HR = 6.0; P = 0.01) and short radiographic progression-free survival (HR = 3.2; P = 0.046). Expression of HOXB13 in CTCs identifies 6 of 6 patients with ≤12-month survival, with a subset also expressing the ARV7 splice variant. In a second cohort of 34 men with localized prostate cancer, an elevated preoperative CTCL score predicts microscopic dissemination to seminal vesicles and/or lymph nodes (P < 0.001). Thus, digital quantitation of CTC-specific transcripts enables noninvasive monitoring that may guide treatment selection in both metastatic and localized prostate cancer.Significance: There is an unmet need for biomarkers to guide prostate cancer therapies, for curative treatment of localized cancer and for application of molecularly targeted agents in metastatic disease. Digital quantitation of prostate CTC-derived transcripts in blood specimens is predictive of abiraterone response in metastatic cancer and of early dissemination in localized cancer. Cancer Discov; 8(3); 288-303. ©2018 AACR.See related commentary by Heitzer and Speicher, p. 269This article is highlighted in the In This Issue feature, p. 253.


Subject(s)
Androstenes/pharmacology , Biomarkers, Tumor/genetics , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , RNA, Neoplasm/genetics , Aged , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Humans , Male , Middle Aged , Neoplastic Cells, Circulating/drug effects , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , RNA, Neoplasm/analysis , Receptors, Androgen/genetics , Treatment Outcome
4.
Nat Commun ; 8(1): 1733, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170510

ABSTRACT

Precise rare-cell technologies require the blood to be processed immediately or be stabilized with fixatives. Such restrictions limit the translation of circulating tumor cell (CTC)-based liquid biopsy assays that provide accurate molecular data in guiding clinical decisions. Here we describe a method to preserve whole blood in its minimally altered state by combining hypothermic preservation with targeted strategies that counter cooling-induced platelet activation. Using this method, whole blood preserved for up to 72 h can be readily processed for microfluidic sorting without compromising CTC yield and viability. The tumor cells retain high-quality intact RNA suitable for single-cell RT-qPCR as well as RNA-Seq, enabling the reliable detection of cancer-specific transcripts including the androgen-receptor splice variant 7 in a cohort of prostate cancer patients with an overall concordance of 92% between fresh and preserved blood. This work will serve as a springboard for the dissemination of diverse blood-based diagnostics.


Subject(s)
Cell Separation/methods , Microfluidics/methods , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blood Preservation/methods , Case-Control Studies , Cell Line, Tumor , Gene Expression Profiling , Humans , Male , Platelet Activation , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Protein Isoforms/blood , Protein Isoforms/genetics , RNA, Neoplasm/blood , RNA, Neoplasm/genetics , Receptors, Androgen/blood , Receptors, Androgen/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA
5.
Nat Commun ; 8: 14344, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181495

ABSTRACT

Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of ß-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that ß-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/blood , Neoplasms/genetics , beta-Globins/genetics , Animals , Antioxidants/metabolism , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Cytoprotection/genetics , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Male , Mice , Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Reactive Oxygen Species/metabolism , Stress, Physiological , Up-Regulation/genetics , beta-Globins/metabolism
6.
J Mater Chem B ; 2(43): 7524-7533, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25558374

ABSTRACT

Cationic and anionic residues of the extracellular matrices (ECM) of bone play synergistic roles in recruiting precursor ions and templating the nucleation, growth and crystalline transformations of calcium apatite in natural biomineralization. We previously reported that zwitterionic sulfobetaine ligands can template extensive 3-dimensional (3-D) hydroxyapaptite (HA)-mineralization of photo-crosslinked polymethacrylatehydrogels. Here, we compared the potency of two other major zwitterionic ligands, phosphobetaine and carboxybetaine, with that of the sulfobetaine in mediating 3-D mineralization using the crosslinked polymethacrylate hydrogel platform. We confirmed that all three zwitterionic hydrogels were able to effectively template 3-D mineralization, supporting the general ability of zwitterions to mediate templated mineralization. Among them, however, sulfobetaine and phosphobetaine hydrogels templated denser 3-D mineralizationthan the carboxybetaine hydrogel, likely due to their higher free water fractions and better maintenance of zwitterionic nature throughout the pH-changes during the in vitro mineralization process. We further demonstrated that the extensively mineralized zwitterionic hydrogels could be exploited for efficient retention (e.g. 99% retention after 24-h incubation in PBS) of osteogenic growth factor recombinant bone morphogenetic protein-2 (rhBMP-2) and subsequent sustained local release with retained bioactivity. Combined with the excellent cytocompatibility of all three zwitterionic hydrogels and the significantly improved cell adhesive properties of their mineralized matrices, these materials could find promising applications in bone tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...