Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Eur J Med Res ; 29(1): 264, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698476

ABSTRACT

BACKGROUND: The fundamental prerequisite for prognostically favorable postoperative results of peripheral nerve repair is stable neurorrhaphy without interruption and gap formation. METHODS: This study evaluates 60 neurorrhaphies on femoral chicken nerves in terms of the procedure and the biomechanical properties. Sutured neurorrhaphies (n = 15) served as control and three sutureless adhesive-based nerve repair techniques: Fibrin glue (n = 15), Histoacryl glue (n = 15), and the novel polyurethane adhesive VIVO (n = 15). Tensile and elongation tests of neurorrhaphies were performed on a tensile testing machine at a displacement rate of 20 mm/min until failure. The maximum tensile force and elongation were recorded. RESULTS: All adhesive-based neurorrhaphies were significant faster in preparation compared to sutured anastomoses (p < 0.001). Neurorrhaphies by sutured (102.8 [cN]; p < 0.001), Histoacryl (91.5 [cN]; p < 0.001) and VIVO (45.47 [cN]; p < 0.05) withstood significant higher longitudinal tensile forces compared to fibrin glue (10.55 [cN]). VIVO, with △L/L0 of 6.96 [%], showed significantly higher elongation (p < 0.001) compared to neurorrhaphy using fibrin glue. CONCLUSION: Within the limitations of an in vitro study the adhesive-based neurorrhaphy technique with VIVO and Histoacryl have the biomechanical potential to offer alternatives to sutured neuroanastomosis because of their stability, and faster handling. Further in vivo studies are required to evaluate functional outcomes and confirm safety.


Subject(s)
Anastomosis, Surgical , Chickens , Tensile Strength , Animals , Anastomosis, Surgical/methods , Biomechanical Phenomena , Tissue Adhesives/pharmacology , Fibrin Tissue Adhesive/pharmacology , Peripheral Nerves/surgery , Peripheral Nerves/physiology , Adhesives , Neurosurgical Procedures/methods
2.
Polymers (Basel) ; 16(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399866

ABSTRACT

The use of tissue engineering to address the shortcomings of current procedures for tendons and ligaments is promising, but it requires a suitable scaffold that meets various mechanical, degradation-related, scalability-related, and biological requirements. Macroporous textile scaffolds made from appropriate fiber material have the potential to fulfill the first three requirements. This study aimed to investigate the biocompatibility, sterilizability, and functionalizability of a multilayer braided scaffold. These macroporous scaffolds with dimensions similar to those of the human anterior cruciate ligament consist of fibers with appropriate tensile strength and degradation behavior melt-spun from Polycaprolactone (PCL). Two different cross-sectional geometries resulting in significantly different specific surface areas and morphologies were used at the fiber level, and a Chitosan-graft-PCL (CS-g-PCL) surface modification was applied to the melt-spun substrates for the first time. All scaffolds elicited a positive cell response, and the CS-g-PCL modification provided a platform for incorporating functionalization agents such as drug delivery systems for growth factors, which were successfully released in therapeutically effective quantities. The fiber geometry was found to be a variable that could be manipulated to control the amount released. Therefore, scaled, surface-modified textile scaffolds are a versatile technology that can successfully address the complex requirements of tissue engineering for ligaments and tendons, as well as other structures.

3.
J Mech Behav Biomed Mater ; 138: 105568, 2023 02.
Article in English | MEDLINE | ID: mdl-36459705

ABSTRACT

Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100µm, and d=150µm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.


Subject(s)
Polyesters , Stents , Models, Theoretical , Polymers
4.
J Funct Biomater ; 13(4)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36412872

ABSTRACT

The anterior cruciate ligament (ACL) is the most commonly injured intra-articular ligament of the knee. Due to its limited intrinsical healing potential and vascularization, injuries of the ACL do not heal satisfactorily, and surgical intervention is usually required. The limitations of existing reconstructive grafts and autologous transplants have prompted interest in tissue-engineered solutions. A tissue engineering scaffold for ACL reconstruction must be able to mimic the mechanical properties of the native ligament, provide sufficient porosity to promote cell growth of the neoligament tissue, and be biodegradable. This study investigates long-term biodegradable poly-ε-caprolactone (PCL)-based scaffolds for ACL replacement using the 3D hexagonal braiding technique. The scaffolds were characterized mechanically as well as morphologically. All scaffolds, regardless of their braid geometry, achieved the maximum tensile load of the native ACL. The diameter of all scaffolds was lower than that of the native ligament, making the scaffolds implantable with established surgical methods. The 3D hexagonal braiding technique offers a high degree of geometrical freedom and, thus, the possibility to develop novel scaffold architectures. Based on the findings of this study, the 3D-braided PCL-based scaffolds studied were found to be a promising construct for tissue engineering of the anterior cruciate ligament.

5.
Front Bioeng Biotechnol ; 10: 988533, 2022.
Article in English | MEDLINE | ID: mdl-36213079

ABSTRACT

Chronic venous insufficiency (CVI) is a leading vascular disease whose clinical manifestations include varicose veins, edemas, venous ulcers, and venous hypertension, among others. Therapies targeting this medical issue are scarce, and so far, no single venous valve prosthesis is clinically available. Herein, we have designed a bi-leaflet transcatheter venous valve that consists of (i) elastin-like recombinamers, (ii) a textile mesh reinforcement, and (iii) a bioabsorbable magnesium stent structure. Mechanical characterization of the resulting biohybrid elastin-like venous valves (EVV) showed an anisotropic behavior equivalent to the native bovine saphenous vein valves and mechanical strength suitable for vascular implantation. The EVV also featured minimal hemolysis and platelet adhesion, besides actively supporting endothelialization in vitro, thus setting the basis for its application as an in situ tissue engineering implant. In addition, the hydrodynamic testing in a pulsatile bioreactor demonstrated excellent hemodynamic valve performance, with minimal regurgitation (<10%) and pressure drop (<5 mmHg). No stagnation points were detected and an in vitro simulated transcatheter delivery showed the ability of the venous valve to withstand the implantation procedure. These results present a promising concept of a biohybrid transcatheter venous valve as an off-the-shelf implant, with great potential to provide clinical solutions for CVI treatment.

6.
Biomedicines ; 10(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35740316

ABSTRACT

(1) Introduction: The intraperitoneal onlay mesh technique (IPOM) is widely used to repair incisional hernias. This method has advantages but suffers from complications due to intraperitoneal adhesion formation between the mesh and intestine. An ideal mesh minimizes adhesions and shows good biocompatibility. To address this, newly developed multifilamentous polyethylene (PET) meshes were constructed from sub-macrophage-sized monofilaments and studied regarding biocompatibility and adhesion formation. (2) Methods: We investigated fine (FPET, 72 filaments, 11 µm diameter each) and ultra-fine multifilament (UFPET, 700 filaments, 3 µm diameter each) polyethylene meshes for biocompatibility in subcutaneous implantation in rats. Adhesion formation was analyzed in the IPOM position in rabbits. Geometrically identical mono-filamentous polypropylene (PP) Bard Soft® PP meshes were used for comparison. Histologic and immune-histologic foreign body reactions were assessed in 48 rats after 7 or 21 days (four mesh types, with two different mesh types per rat; n = 6 per mesh type). Additionally, two different mesh types each were placed in the IPOM position in 24 rabbits to compile the Diamond peritoneal adhesion score after the same timeframes. The biocompatibility and adhesion score differences were analyzed with the Kruskal-Wallis nonparametric statistical test. (3) Results: Overall, FPET and, especially, UFPET showed significantly smaller foreign body granulomas compared to PP meshes. Longer observation periods enhanced the differences. Immunohistology showed no significant differences in the cellular immune response and proliferation. UFPET demonstrated significantly reduced peritoneal adhesion formation compared to all other tested meshes after 21 days. (4) Conclusions: Overall, FPET and, especially, UFPET demonstrated their suitability for IPOM hernia meshes in animal models by improving major aspects of the foreign body reaction and reducing adhesion formation.

7.
Ecol Evol ; 11(20): 14146-14161, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34707847

ABSTRACT

In previous studies, the superhydrophilic skin of moisture-harvesting lizards has been linked to the morphological traits of the lizards' integument, that is, the occurrence of honeycomb-shaped microstructures. Interestingly, these structures can also cover the skin of lizards inhabiting wet habitats. We therefore tested the influence of the microstructures' main features on the habitat choice and wettability in the genus Phrynosoma. The genus Phrynosoma comprises moisture-harvesting species as well as nonspecialists. Lizards of this genus inhabit large areas of North America with diverse climatic conditions. Remarkably, the differences in the manifestation of microstructures are just as versatile as their surroundings. The phylogeny of the lizards as well as the depth of their ventral microstructures, though independent of each other, correlated with the precipitation in their respective habitat. All other morphological traits, as well as the skin's wettability itself, could not predict the habitat of Phrynosoma species. Hence, it is unlikely that the microstructure influences the wettability, at least directly. Hence, we presume an indirect influence for the following reasons: (a) As the ventral side cannot get wet by rain, but the belly could easily interact with a wet surface, the microstructure might facilitate water absorption from wet soil following precipitation. (b) We found the number of dorsal microstructures to be linked to the occurrence of silt in the habitat. In our study, we observed scales being heavily contaminated, most likely with a mixture of dead skin (after shedding) and silt. As many lizards burrow themselves or even shovel sand onto their backs, deploying the substrate might be a mechanism to increase the skin's wettability.

8.
Materials (Basel) ; 13(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785204

ABSTRACT

Mesenchymal stem cells (MSCs) possess huge potential for regenerative medicine. For tissue engineering approaches, scaffolds and hydrogels are routinely used as extracellular matrix (ECM) carriers. The present study investigated the feasibility of using textile-reinforced hydrogels with adjustable porosity and elasticity as a versatile platform for soft tissue engineering. A warp-knitted poly (ethylene terephthalate) (PET) scaffold was developed and characterized with respect to morphology, porosity, and mechanics. The textile carrier was infiltrated with hydrogels and cells resulting in a fiber-reinforced matrix with adjustable biological as well as mechanical cues. Finally, the potential of this platform technology for regenerative medicine was tested on the example of fat tissue engineering. MSCs were seeded on the construct and exposed to adipogenic differentiation medium. Cell invasion was detected by two-photon microscopy, proliferation was measured by the PrestoBlue assay. Successful adipogenesis was demonstrated using Oil Red O staining as well as measurement of secreted adipokines. In conclusion, the given microenvironment featured optimal mechanical as well as biological properties for proliferation and differentiation of MSCs. Besides fat tissue, the textile-reinforced hydrogel system with adjustable mechanics could be a promising platform for future fabrication of versatile soft tissues, such as cartilage, tendon, or muscle.

SELECTION OF CITATIONS
SEARCH DETAIL