Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257278

ABSTRACT

Two trinuclear oxo-centred iron(III) coordination compounds of monensic and salinomycinic acids (HL) were synthesized and their spectral properties were studied using physicochemical/thermal methods (FT-IR, TG-DTA, TG-MS, EPR, Mössbauer spectroscopy, powder XRD) and elemental analysis. The data suggested the formation of [Fe3(µ3-O)L3(OH)4] and the probable complex structures were modelled using the DFT method. The computed spectral parameters of the optimized constructs were compared to the experimentally measured ones. In each complex, three metal centres were joined together at the axial position by a µ3-O unit to form a {Fe3O}7+ core. The antibiotics monoanions served as bidentate ligands through the carboxylate and hydroxyl groups located at the termini. The carboxylate moieties played a dual role bridging each two metal centres. Hydroxide anions secured the overall neutral character of the coordination species. Mössbauer spectra displayed asymmetric quadrupole doublets that were consistent with the existence of two types of high-spin iron(III) sites with different environments-two Fe[O5] and one Fe[O6] centres. The solid-state EPR studies confirmed the +3 oxidation state of iron with a total spin St = 5/2 per trinuclear cluster. The studied complexes are the first iron(III) coordination compounds of monensin and salinomycin reported so far.

2.
Acta Chim Slov ; 67(4): 1082-1091, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33533470

ABSTRACT

ZnFe2O4/rGO/g-C3N4 ternary nanocomposite photocatalysts with different ZnFe2O4/g-C3N4 weight ratio (0.5, 0.75, 1) were prepared by a stepwise solvothermal method using ethylene glycol as the solvent. Physicochemical methods such as X-ray diffraction, UV-Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy were applied in order to characterize the composites. The formation of a meso-/macroporous structure with specific surface area between 67 and 77 m2 g?1 was confirmed by N2 adsorption/desorption. The bandgap of the composites was found to be lower (2.30 eV) than that of g-C3N4 (2.7 eV). In contrast to pure g-C3N4, the composites showed no fluorescence, i.e. no recombination of e?/h+ took place. All samples, including pure g-C3N4 and ZnFe2O4, were tested for adsorption and photocatalytic degradation of aqueous malachite green model solutions (10?5 M) under visible light irradiation (? >400 nm). The results show that the prepared nanocomposites have higher absorption and photocatalytic activity than the pristine g-C3N4 and ZnFe2O4 and can be successfully used for water purification from organic azo-dyes.

SELECTION OF CITATIONS
SEARCH DETAIL
...