Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 192(2): 1338-1358, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36896653

ABSTRACT

Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.


Subject(s)
Diterpenes , Zea mays , Zea mays/metabolism , Diterpenes/metabolism , Biosynthetic Pathways , Lipid Metabolism
2.
ACS Synth Biol ; 11(5): 1865-1873, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35438493

ABSTRACT

Glucoraphanin is a plant specialized metabolite found in cruciferous vegetables that has long been a target for production in a heterologous host because it can subsequently be hydrolyzed to form the chemopreventive compound sulforaphane before and during consumption. However, previous studies have only been able to produce small amounts of glucoraphanin in heterologous plant and microbial systems compared to the levels found in glucoraphanin-producing plants, suggesting that there may be missing auxiliary genes that play a role in improving production in planta. In an effort to identify auxiliary genes required for high glucoraphanin production, we leveraged transient expression in Nicotiana benthamiana to screen a combination of previously uncharacterized coexpressed genes and rationally selected genes alongside the glucoraphanin biosynthetic pathway. This strategy alleviated metabolic bottlenecks, which improved glucoraphanin production by 4.74-fold. Our optimized glucoraphanin biosynthetic pathway provides a pathway amenable for high glucoraphanin production.


Subject(s)
Glucosinolates , Imidoesters , Oximes , Sulfoxides , Nicotiana/genetics
3.
Front Plant Sci ; 12: 691462, 2021.
Article in English | MEDLINE | ID: mdl-34504505

ABSTRACT

Plants offer a vast source of bioactive chemicals with the potential to improve human health through the prevention and treatment of disease. However, many potential therapeutics are produced in small amounts or in species that are difficult to cultivate. The rapidly evolving field of plant synthetic biology provides tools to capitalize on the inventive chemistry of plants by transferring metabolic pathways for therapeutics into far more tenable plants, increasing our ability to produce complex pharmaceuticals in well-studied plant systems. Plant synthetic biology also provides methods to enhance the ability to fortify crops with nutrients and nutraceuticals. In this review, we discuss (1) the potential of plant synthetic biology to improve human health by generating plants that produce pharmaceuticals, nutrients, and nutraceuticals and (2) the technological challenges hindering our ability to generate plants producing health-promoting small molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...