Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(21): 14453-14467, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747845

ABSTRACT

We demonstrate a family of molecular precursors based on 7,10-dibromo-triphenylenes that can selectively produce different varieties of atomically precise porous graphene nanomaterials through the use of different synthetic environments. Upon Yamamoto polymerization of these molecules in solution, the free rotations of the triphenylene units around the C-C bonds result in the formation of cyclotrimers in high yields. In contrast, in on-surface polymerization of the same molecules on Au(111) these rotations are impeded, and the coupling proceeds toward the formation of long polymer chains. These chains can then be converted to porous graphene nanoribbons (pGNRs) by annealing. Correspondingly, the solution-synthesized cyclotrimers can also be deposited onto Au(111) and converted into porous nanographenes (pNGs) via thermal treatment. Thus, both processes start with the same molecular precursor and end with a porous graphene nanomaterial on Au(111), but the type of product, pNG or pGNR, depends on the specific coupling approach. We also produced extended nanoporous graphenes (NPGs) through the lateral fusion of highly aligned pGNRs on Au(111) that were grown at high coverage. The pNGs can also be synthesized directly in solution by Scholl oxidative cyclodehydrogenation of cyclotrimers. We demonstrate the generality of this approach by synthesizing two varieties of 7,10-dibromo-triphenylenes that selectively produced six nanoporous products with different dimensionalities. The basic 7,10-dibromo-triphenylene monomer is amenable to structural modifications, potentially providing access to many new porous graphene nanomaterials. We show that by constructing different porous structures from the same building blocks, it is possible to tune the energy band gap in a wide range.

2.
RSC Adv ; 12(11): 6615-6618, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35424640

ABSTRACT

We report a new diffusion-controlled on-surface synthesis approach for graphene nanoribbons (GNR) consisting of two types of precursor molecules, which exploits distinct differences in the surface mobilities of the precursors. This approach is a step towards a more controlled fabrication of complex GNR heterostructures and should be applicable to the on-surface synthesis of a variety of GNR heterojunctions.

3.
Chemphyschem ; 22(17): 1769-1773, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-33905148

ABSTRACT

The on-surface coupling of the prototypical precursor molecule for graphene nanoribbon synthesis, 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (C42 Br2 H26 , TPTP), and its non-brominated analog hexaphenylbenzene (C42 H30 , HPB), was investigated on coinage metal substrates as a function of thermal treatment. For HPB, which forms non-covalent 2D monolayers at room temperature, a thermally induced transition of the monolayer's structure could be achieved by moderate annealing, which is likely driven by π-bond formation. It is found that the dibrominated carbon positions of TPTP do not guide the coupling if the growth occurs on a substrate at temperatures that are sufficient to initiate C-H bond activation. Instead, similar one-dimensional molecular structures are obtained for both types of precursors, HPB and TPTP.

4.
J Phys Condens Matter ; 32(32): 324003, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32189641

ABSTRACT

The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the 'herringbone' reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the chain axis, along the Au [Formula: see text] direction, thereby bridging over 5 atomic spacings, in this direction. Experimental evidence suggests that the molecular spins are locked in a mixed state in the sub-monolayer regime at temperatures between 100 K and 300 K.

5.
J Phys Condens Matter ; 32(3): 034001, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31639105

ABSTRACT

The addition of various dipolar molecules is shown to affect the temperature dependence of the spin state occupancy of the much studied spin crossover Fe(II) complex, [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine). Specifically, the addition of benzimidazole results in a re-entrant spin crossover transition, i.e. the spin state starts in the mostly low spin state, then high spin state occupancy increases, and finally the high spin state occupancy decreases with increasing temperature. This behavior contrasts with that observed when the highly polar p -benzoquinonemonoimine zwitterion C6H2(…NH2)2(…O)2 was mixed with [Fe{H2B(pz)2}2(bipy)], which resulted in locking [Fe{H2B(pz)2}2(bipy)] largely into a low spin state while addition of the ethyl derivative C6H2(…NHC2H5)2(…O)2 did not appear to perturb the spin crossover transition of [Fe{H2B(pz)2}2(bipy)].

6.
Chemphyschem ; 20(18): 2281-2285, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31185134

ABSTRACT

We report the on-surface synthesis and spectroscopic study of laterally extended chevron graphene nanoribbons (GNRs) and compare them with the established chevron GNRs, emphasizing the consistency of bandgap reduction of semiconducting GNRs with increased width. The laterally extended chevron GNRs grown on Au(111) exhibit a bandgap of about 2.2 eV, which is considerably smaller than the values reported for chevron GNRs in similar studies.

7.
J Vis Exp ; (143)2019 01 22.
Article in English | MEDLINE | ID: mdl-30735156

ABSTRACT

A method for synthesizing photoactive inorganic perovskite quantum dot inks and an inkjet printer deposition method, using the synthesized inks, are demonstrated. The ink synthesis is based on a simple wet chemical reaction and the inkjet printing protocol is a facile step by step method. The inkjet printed thin films have been characterized by X-ray diffraction, optical absorption spectroscopy, photoluminescent spectroscopy, and electronic transport measurements. X-ray diffraction of the printed quantum dot films indicates a crystal structure consistent with an orthorhombic room temperature phase with (001) orientation. In conjunction with other characterization methods, the X-ray diffraction measurements show high quality films can be obtained through the inkjet printing method.


Subject(s)
Calcium Compounds/chemistry , Ink , Oxides/chemistry , Printing/methods , Titanium/chemistry
8.
J Phys Condens Matter ; 30(30): 305503, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29916814

ABSTRACT

A thermal component to the soft x-ray induced spin crossover transition exists in the switching of a spin crossover compound (complex [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) combined with the dipolar molecular additives (zwitterionic p-benzoquinonemonoimine C6H2([Formula: see text])2([Formula: see text])2). The addition of the zwitterionic molecule locks the Fe(II) complex in a largely low spin state configuration over an unusually broad temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. It is demonstrated here that the process of exciting the [Fe{H2B(pz)2}2(bipy)] moiety, in the presence of with C6H2([Formula: see text])2([Formula: see text])2, to an electronic state characteristic of the high spin state though incident x-ray fluences, has a thermal activation energies are determined to 14-18 meV for a range of mixing ratios from 1:2 to 1:10. Those activation energies are also significantly reduced as compared to values of 60-80 meV found for nanometer thin films of [Fe{H2B(pz)2}2(bipy)] on SiO2.

9.
Nanoscale ; 10(27): 13011-13021, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-29872821

ABSTRACT

The search for new magnetic materials with high magnetization and magnetocrystalline anisotropy is important for a wide range of applications including information and energy processing. There is only a limited number of naturally occurring magnetic compounds that are suitable. This situation stimulates an exploration of new phases that occur far from thermal-equilibrium conditions, but their stabilization is generally inhibited due to high positive formation energies. Here a nanocluster-deposition method has enabled the discovery of a set of new non-equilibrium Co-N intermetallic compounds. The experimental search was assisted by computational methods including adaptive-genetic-algorithm and electronic-structure calculations. Conventional wisdom is that the interstitial or substitutional solubility of N in Co is much lower than that in Fe and that N in Co in equilibrium alloys does not produce materials with significant magnetization and anisotropy. By contrast, our experiments identify new Co-N compounds with favorable magnetic properties including hexagonal Co3N nanoparticles with a high saturation magnetic polarization (Js = 1.28 T or 12.8 kG) and an appreciable uniaxial magnetocrystalline anisotropy (K1 = 1.01 MJ m-3 or 10.1 Mergs per cm3). This research provides a pathway for uncovering new magnetic compounds with computational efficiency beyond the existing materials database, which is significant for future technologies.

10.
Nanoscale ; 9(47): 18835-18844, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29177282

ABSTRACT

Atomically precise graphene nanoribbons (GNRs) of two types, chevron GNRs and N = 7 straight armchair GNRs (7-AGNRs), have been synthesized through a direct contact transfer (DCT) of molecular precursors on Au(111) and gradual annealing. This method provides an alternative to the conventional approach for the deposition of molecules on surfaces by sublimation and simplifies preparation of dense monolayer films of GNRs. The DCT method allows deposition of molecules on a surface in their original state and then studying their gradual transformation to polymers to GNRs by scanning tunneling microscopy (STM) upon annealing. We performed STM characterization of the precursors of chevron GNRs and 7-AGNRs, and demonstrate that the assemblies of the intermediates of the GNR synthesis are stabilized by π-π interactions. This conclusion was supported by the density functional theory calculations. The resulting monolayer films of GNRs have sufficient coverage and density of nanoribbons for ex situ characterization by spectroscopic methods, such as Raman spectroscopy, and may prove useful for the future GNR device studies.

11.
Adv Mater ; 29(39)2017 Oct.
Article in English | MEDLINE | ID: mdl-28846811

ABSTRACT

The Fe(II) spin crossover complex [Fe{H2 B(pz)2 }2 (bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) can be locked in a largely low-spin-state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2 and Al2 O3 , or in powder samples by mixing with the strongly dipolar zwitterionic p-benzoquinonemonoimine C6 H2 (-⋯ NH2 )2 (-⋯ O)2 . Remarkably, it is found in both cases that incident X-ray fluences then restore the [Fe{H2 B(pz)2 }2 (bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light- or X-ray-induced excited-spin-state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.

12.
Chem Commun (Camb) ; 53(60): 8463-8466, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28702538

ABSTRACT

Atomically precise chevron graphene nanoribbons (GNRs) have been synthesized on Cu(111) substrates by the surface-assisted coupling of 6,11-dibromo-1,2,3,4-tetraphenyltriphenylene (C42Br2H26) and thermal cyclodehydrogenation of the resulting polymer. The GNRs form on Cu(111) epitaxially along the 〈112〉 crystallographic directions, which was found to be in agreement with the computational results, and at lower temperatures than on Au(111). This work demonstrates that the substrate plays an important role in the on-surface synthesis of GNRs and can result in new assembly modes of GNR structures.

13.
ACS Nano ; 11(3): 2486-2493, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28165713

ABSTRACT

A strategy to synthesize a 2D graphenic but ternary monolayer containing atoms of carbon, nitrogen, and boron, h-BCN, is presented. The synthesis utilizes bis-BN cyclohexane, B2N2C2H12, as a precursor molecule and relies on thermally induced dehydrogenation of the precursor molecules and the formation of an epitaxial monolayer on Ir(111) through covalent bond formation. The lattice mismatch between the film and substrate causes a strain-driven periodic buckling of the film. The structure of the film and its corrugated morphology is discussed based on comprehensive data from molecular-resolved scanning tunneling microscopy imaging, X-ray photoelectron spectroscopy, low-energy electron diffraction, and density functional theory. First-principles calculations further predict a direct electronic band gap that is intermediate between gapless graphene and insulating h-BN.

14.
J Phys Chem Lett ; 7(3): 435-40, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26750982

ABSTRACT

The synthesis of 2D H-bonded cocrystals from the room-temperature ferroelectric organics croconic acid (CA) and 3-hydroxyphenalenone (3-HPLN) is demonstrated through self-assembly on a substrate under ultrahigh vacuum. 2D cocrystal polymorphs of varied stoichiometry were identified with scanning tunneling microscopy, and one of the observed structural building blocks consists of two CA and two 3-HPLN molecules. Computational analysis with density functional theory confirmed that the experimental (CA)2(3-HPLN)2 tetramers are lower in energy than single-component structures due to the ability of the tetramers to pack efficiently in two dimensions, the promotion of favorable electrostatic interactions between tetramers, and the optimal number of intermolecular hydrogen bonds. The structures investigated, especially the experimentally found tetrameric building blocks, are not polar. However, it is demonstrated computationally that cocrystallization can, in principle, result in heterogeneous structures with dipole moments that exceed those of homogeneous structures and that 2D structures with select stoichiometries could favor metastable polar structures.

15.
Nano Lett ; 15(9): 5770-7, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26258628

ABSTRACT

Narrow graphene nanoribbons (GNRs) constructed by atomically precise bottom-up synthesis from molecular precursors have attracted significant interest as promising materials for nanoelectronics. But there has been little awareness of the potential of GNRs to serve as nanoscale building blocks of novel materials. Here we show that the substitutional doping with nitrogen atoms can trigger the hierarchical self-assembly of GNRs into ordered metamaterials. We use GNRs doped with eight N atoms per unit cell and their undoped analogues, synthesized using both surface-assisted and solution approaches, to study this self-assembly on a support and in an unrestricted three-dimensional (3D) solution environment. On a surface, N-doping mediates the formation of hydrogen-bonded GNR sheets. In solution, sheets of side-by-side coordinated GNRs can in turn assemble via van der Waals and π-stacking interactions into 3D stacks, a process that ultimately produces macroscopic crystalline structures. The optoelectronic properties of these semiconducting GNR crystals are determined entirely by those of the individual nanoscale constituents, which are tunable by varying their width, edge orientation, termination, and so forth. The atomically precise bottom-up synthesis of bulk quantities of basic nanoribbon units and their subsequent self-assembly into crystalline structures suggests that the rapidly developing toolset of organic and polymer chemistry can be harnessed to realize families of novel carbon-based materials with engineered properties.

16.
J Chem Phys ; 142(10): 101921, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25770510

ABSTRACT

The role of dipole-dipole interactions in the self-assembly of dipolar organic molecules on surfaces is investigated. As a model system, strongly dipolar model molecules, p-benzoquinonemonoimine zwitterions (ZI) of type C6H2(⋯ NHR)2(⋯ O)2 on crystalline coinage metal surfaces were investigated with scanning tunneling microscopy and first principles calculations. Depending on the substrate, the molecules assemble into small clusters, nano gratings, and stripes, as well as in two-dimensional islands. The alignment of the molecular dipoles in those assemblies only rarely assumes the lowest electrostatic energy configuration. Based on calculations of the electrostatic energy for various experimentally observed molecular arrangements and under consideration of computed dipole moments of adsorbed molecules, the electrostatic energy minimization is ruled out as the driving force in the self-assembly. The structures observed are mainly the result of a competition between chemical interactions and substrate effects. The substrate's role in the self-assembly is to (i) reduce and realign the molecular dipole through charge donation and back donation involving both the molecular HOMO and LUMO, (ii) dictate the epitaxial orientation of the adsorbates, specifically so on Cu(111), and (iii) inhibit attractive forces between neighboring chains in the system ZI/Cu(111), which results in regularly spaced molecular gratings.

17.
J Phys Condens Matter ; 26(44): 443001, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25287516

ABSTRACT

Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H(2)O, H(2), O(2), CO, NO(2), NO, and NH(3)), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH(2), An-CH(3), An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene's electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.


Subject(s)
Biopolymers/analysis , Biopolymers/chemistry , Biosensing Techniques/instrumentation , Gases/analysis , Gases/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Adsorption , Binding Sites , Biosensing Techniques/methods , Conductometry/instrumentation , Conductometry/methods , Equipment Design , Nanoparticles/ultrastructure
18.
Chem Commun (Camb) ; 50(32): 4172-4, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24623056

ABSTRACT

Large quantities of narrow graphene nanoribbons with edge-incorporated nitrogen atoms can be synthesized via Yamamoto coupling of molecular precursors containing nitrogen atoms followed by cyclodehydrogenation using Scholl reaction.

19.
Nat Commun ; 5: 3189, 2014.
Article in English | MEDLINE | ID: mdl-24510014

ABSTRACT

According to theoretical studies, narrow graphene nanoribbons with atomically precise armchair edges and widths of <2 nm have a bandgap comparable to that in silicon (1.1 eV), which makes them potentially promising for logic applications. Different top-down fabrication approaches typically yield ribbons with width >10 nm and have limited control over their edge structure. Here we demonstrate a novel bottom-up approach that yields gram quantities of high-aspect-ratio graphene nanoribbons, which are only ~1 nm wide and have atomically smooth armchair edges. These ribbons are shown to have a large electronic bandgap of ~1.3 eV, which is significantly higher than any value reported so far in experimental studies of graphene nanoribbons prepared by top-down approaches. These synthetic ribbons could have lengths of >100 nm and self-assemble in highly ordered few-micrometer-long 'nanobelts' that can be visualized by conventional microscopy techniques, and potentially used for the fabrication of electronic devices.

20.
Rev Sci Instrum ; 84(3): 033903, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23556826

ABSTRACT

We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 µeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...