Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Exp Pathol ; 102(2): 74-79, 2021 04.
Article in English | MEDLINE | ID: mdl-33710712

ABSTRACT

Hypercholesterolaemia is a complex condition with multiple causes, including both lifestyle and genetic aspects. It is also a risk factor for cardiovascular diseases (CVDs), which are responsible for 172 million deaths/year. Although the reasons for hypercholesterolaemia are known, there are many critical questions that remain to be answered so that new therapeutics can be developed. In order to elucidate the pathobiology of this condition, animal models can mimic the pathology of human hypercholesterolaemia. One example of an animal model is induced by the hypercholesterolaemic diet in Wistar rats. The present review first summarizes the current understanding of the metabolic profile involved in hypercholesterolaemia in humans. Next it comments about the lack of consensus as to which hypercholesterolaemia induction protocol should be used. The present work aimed to review experimental studies that induced hypercholesterolaemia in Wistar rats it was not intended to judge the "best" model, since they all achieved the goal of inducing an increase in serum cholesterol.


Subject(s)
Diet, High-Fat , Disease Models, Animal , Hypercholesterolemia , Animals , Diet, High-Fat/adverse effects , Humans , Rats , Rats, Wistar
2.
Neurochem Int ; 141: 104875, 2020 12.
Article in English | MEDLINE | ID: mdl-33039443

ABSTRACT

Rosmarinic acid (RA) lipid-nanotechnology-based delivery systems associate with mucoadhesive biopolymers for nasal administration has arisen as a new promising neuroprotective therapy for neurodegenerative disorders (ND). We have previously demonstrated the glioprotective effect of chitosan-coated RA nanoemulsions (RA CNE) against lipopolysaccharide (LPS)-induced damage in rat astrocyte primary culture. Here, we further investigate the protective effect of RA CNE nasal administration on LPS-induced memory deficit, neuroinflammation, and oxidative stress in Wistar rats, since these in vivo studies were crucial to understand the impact of developed delivery systems in the RA neuroprotective effects. The animals were treated through nasal route with RA CNE (2 mg·mL-1), free RA (2 mg·mL-1), blank CNE, and saline (control and LPS groups) administrations (n.a., 100 µL per nostril) twice a day (7 a.m./7 p.m.) for six days. On the sixth day, the animals received the last treatments and LPS was intraperitoneally (i.p.) administrated (250 µg·kg-1). Overall results, proved for the first time that the RA CNE nasal administration elicits a neuroprotective effect against LPS-induced damage, which was associated with increased 1.6 times recognition index, decreased 5.0 and 1.9 times in GFAP+ cell count and CD11b expression, respectively, as well as increased 1.7 times SH in cerebellum and decreased 3.9 times TBARS levels in cerebral cortex in comparison with LPS group. RA CNE treatment also facilitates RA bioavailability in the brain, confirmed by RA quantification. Free RA also demonstrates a protective effect in some studied parameters, although no RA was quantified in the brain.


Subject(s)
Chitosan/chemistry , Cinnamates/administration & dosage , Cinnamates/therapeutic use , Depsides/administration & dosage , Depsides/therapeutic use , Encephalitis/prevention & control , Memory Disorders/prevention & control , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Administration, Intranasal , Animals , Antioxidants/pharmacology , Biological Availability , Cinnamates/chemistry , Depsides/chemistry , Drug Compounding , Emulsions , Encephalitis/chemically induced , Lipopolysaccharides , Male , Memory Disorders/chemically induced , Neuroprotective Agents/chemistry , Psychomotor Performance/drug effects , Rats , Rats, Wistar , Rosmarinic Acid
3.
J Food Biochem ; 44(11): e13457, 2020 11.
Article in English | MEDLINE | ID: mdl-32875622

ABSTRACT

One of the major risk factors for cardiovascular disease is high total cholesterol. It is known that some foods can reduce plasma cholesterol, such as oats. Cassava flour has a similar amount of fiber when compared to oats. The objective of this study was to evaluate the hypocholesterolemic potential of cassava flour. Thirty Wistar rats (eight weeks old) were divided into three groups: control, high-cholesterol diet, high-cholesterol diet + cassava flour, and were treated for 8 weeks. The weight and food consumption of the animals were evaluated weekly. After euthanasia, analyzes of biochemical and oxidative stress profiles were performed, besides the histological analysis of the liver. Cassava flour protected animals from lipoperoxidation, according to thiobarbituric acid-reactive substances results and improved superoxide dismutase activity and thiol content; however, failed to improve the lipid profile and catalase. Cassava flour was possibly able to slow the progression of NASH according to liver histology. PRACTICAL APPLICATIONS: Lifestyle and nutritional habits have been considered important factors associated with the development of dyslipidemia and other chronic diseases. Medicines for chronic diseases are often expensive and have present side effects, and therefore, it is preferable to prevent them through food. Cassava flour is a food widely consumed by Brazilians, which is inexpensive and contains no gluten. Understanding more about one of the most used foods in Brazil is important for health professionals to be able to prescribe it for the correct purposes.


Subject(s)
Dyslipidemias , Flour , Manihot , Animals , Lipids , Oxidation-Reduction , Rats , Rats, Wistar
4.
Cell Mol Neurobiol ; 40(1): 123-139, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31446560

ABSTRACT

Rosmarinic acid (RA) is a natural polyphenolic compound with a well-documented neuroprotective effect mainly associated with its anti-inflammatory and antioxidant activities. Recently, our research group developed and optimized chitosan-coated RA nanoemulsions (RA CNE) intended to be used for nasal delivery as a new potential neuroprotective therapy. In this sense, the present study aimed to evaluate the protective and/or therapeutic potential of RA CNE in inflammation/oxidative stress induced by LPS (1 µg mL-1) in rat astrocyte primary cultures. In summary, pre-treatment with RA CNE before exposure to LPS (protective protocol) reduced significantly the LPS-induced alterations in astrocyte cell viability, proliferation, and cell death by necrosis, which was not observed in therapeutic protocol. RA CNE protective protocol also enhanced anti-oxidative status by ~ 50% by decreasing oxygen reactive species production and nitric oxide levels and preventing total thiol content decrease. Finally, our results demonstrate the protective effect of RA CNE in migratory activation and GFAP expression of reactive astrocytes. Overall, our findings indicate for the first time the RA CNE glioprotective potential, associated with an increase in cell viability and proliferation, a preventive effect on cellular death by necrosis, migratory ability and hypertrophic reactive astrocytes, and the reparation of astrocyte redox state.


Subject(s)
Astrocytes/pathology , Chitosan/chemistry , Cinnamates/pharmacology , Depsides/pharmacology , Inflammation/pathology , Nanoparticles/chemistry , Neuroglia/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Animals, Newborn , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cinnamates/chemistry , Depsides/chemistry , Emulsions , Glial Fibrillary Acidic Protein/metabolism , Lipopolysaccharides , Neuroglia/metabolism , Neuroprotective Agents/chemistry , Rats, Wistar , Rosmarinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...