Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(8): e10364, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37539070

ABSTRACT

Time from birth or hatching to the first shed (postnatal ecdysis) in snakes ranges from about an hour to several weeks depending upon the species. We assessed patterns in time to postnatal ecdysis in 102 snake species for which we could source appropriate information, covering 2.6% of all extant snake species, and related measures to various biological traits. Reconstruction revealed ancestral time to postnatal ecdysis to be 11 days. Since time to postnatal ecdysis can be shorter or longer than the ancestral state, we argue that there are several competing drivers for time to postnatal ecdysis. A reduced time to postnatal ecdysis has evolved in several lineages, commonly in ambush-foraging, viviparous vipers, while extended time to postnatal ecdysis is associated with oviparous species with maternal care. Of central importance is the impact of postnatal ecdysis on the scent levels of neonates, resulting in a reduction of time to postnatal ecdysis in chemically cryptic species, while the pivotal role of scent in mother-neonate recognition has resulted in the retention or extension of time to postnatal ecdysis. We showed that postnatal ecdysis improves chemical crypsis. The patterns revealed in this study suggest that measures of time to postnatal ecdysis can provide insights into the biology of snakes and be used as an indicator of certain life history traits.

2.
PeerJ ; 9: e11728, 2021.
Article in English | MEDLINE | ID: mdl-34434643

ABSTRACT

BACKGROUND: The African continent is comprised of several different biomes, although savanna is the most prevalent. The current heterogeneous landscape was formed through long-term vegetation shifts as a result of the global cooling trend since the Oligocene epoch. The overwhelming trend was a shift from primarily forest, to primarily savanna. As such, faunal groups that emerged during the Paleogene/Neogene period and have species distributed in both forest and savanna habitat should show a genetic signature of the possible evolutionary impact of these biome developments. Crotaphopeltis and Philothamnus (Colubridae) are excellent taxa to investigate the evolutionary impact of these biome developments on widespread African colubrid snakes, and whether timing and patterns of radiation are synchronous with biome reorganisation. METHODS: A phylogenetic framework was used to investigate timing of lineage diversification. Phylogenetic analysis included both genera as well as other Colubridae to construct a temporal framework in order to estimate radiation times for Crotaphopeltis and Philothamnus. Lineage diversification was estimated in Bayesian Evolutionary Analysis Sampling Trees (BEAST), using two mitochondrial markers (cyt-b, ND4), one nuclear marker (c-mos), and incorporating one fossil and two biogeographical calibration points. Vegetation layers were used to classify and confirm species association with broad biome types ('closed' = forest, 'open' = savanna/other), and the ancestral habitat state for each genus was estimated. RESULTS: Philothamnus showed an ancestral state of closed habitat, but the ancestral habitat type for Crotaphopeltis was equivocal. Both genera showed similar timing of lineage diversification diverging from their sister genera during the Oligocene/Miocene transition (ca. 25 Mya), with subsequent species radiation in the Mid-Miocene. Philothamnus appeared to have undergone allopatric speciation during Mid-Miocene forest fragmentation. Habitat generalist and open habitat specialist species emerged as savanna became more prevalent, while at least two forest associated lineages within Crotaphopeltis moved into Afromontane forest habitat secondarily and independently. DISCUSSION: With similar diversification times, but contrasting ancestral habitat reconstructions, we show that these genera have responded very differently to the same broad biome shifts. Differences in biogeographical patterns for the two African colubrid genera is likely an effect of distinct life-history traits, such as the arboreous habits of Philothamnus compared to the terrestrial lifestyle of Crotaphopeltis.

3.
Zootaxa ; 4646(3): zootaxa.4646.3.6, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31717005

ABSTRACT

A new species of tree snake Dipsadoboa montisilva Branch, Conradie Tolley sp. nov. (Serpentes: Colubridae) is described from the 'sky islands' of Mount Mabu and Mount Ribáuè in northern Mozambique. Features of scalation, colour, body form and habitat distinguish the new species from other Dipsadoboa. This is supported by a phylogenetic analysis using one mitochondrial marker (cytochrome b) that shows the new Mozambican species is divergent from other sampled Dipsadoboa, including D. flavida and D. aulica, the only congeners known to occur in Mozambique. Morphologically, the new Dipsadoboa forms part of the D. werneri-shrevei complex from east and southeast Africa, but differs in having higher subcaudal counts, a different temporal pattern and only two supralabials entering the orbit. Phylogenetically, it occurs in a clade with D. shrevei and D. werneri. The status of D. shrevei in East Africa is reassessed, particularly in terms of the poorly-known Dipsadoboa shrevei kageleri from northern Tanzania. It is morphologically well defined from D. shrevei shrevei and utilises a different habitat. Although based on limited genetic data, it appears to be well-defined from typical D. shrevei and is accordingly raised to specific status. The only Tanzanian record for typical D. shrevei from Mtene, Rondo Plateau in southeast Tanzania is well isolated from the species' range to the west (e.g. Zambia, Angola) and the published scalation features, particularly ventral counts, do not fully accord with D. shrevei. The Rondo Plateau population is treated as Dipsadoboa incerta sedis, and because we return D. shrevei to its binomial status, we can no longer consider D. shrevei as occurring in Tanzania. Biogeographically, the Rondo Plateau population may have a stronger affinity to the new Mozambican species. The discovery of isolated populations of the new species in mid-altitude forest remnants on Mt Mabu and Mt Ribáuè emphasizes the high conservation importance of the Mozambique forest 'sky islands' from which numerous other endemic new species have been recently discovered. These species are impacted by ongoing habitat destruction through slash and burn clearing for subsistence agriculture.


Subject(s)
Colubridae , Angola , Animals , Forests , Islands , Mozambique , Phylogeny , Tanzania , Zambia
4.
Mol Phylogenet Evol ; 130: 357-365, 2019 01.
Article in English | MEDLINE | ID: mdl-30366085

ABSTRACT

The African green and bush snakes of the genus Philothamnus currently comprises 21 species and three subspecies and occurs throughout sub-Saharan Africa. The genus has been the subject of previous taxonomic revisions based on traditional morphological characters and limited genetic assessment, and may not reflect their evolutionary history. Indeed, previous findings based on phylogenetics show discordant results of interspecific relationships and question the monophyly of the genus, although taxon sampling has been limited to date. We investigated phylogenetic affinities within Philothamnus with more inclusive genetic and geographical sampling, with the aim of better understanding their evolutionary history, so that future taxonomic revision of Philothamnus can be better informed. Species relationships were examined within a phylogenetic context and sampling included 133 ingroup samples from 16 taxa. Phylogenies were constructed in Bayesian and likelihood frameworks using three mitochondrial (16S, cyt b and ND4) and two nuclear (c-mos and RAG1) markers. Competing hypotheses relating to the monophyly of the genus were tested with a Shimodaira-Hasegawa test. To examine species boundaries, Bayesian General Mixed Yule-Coalescent Model and multi-rate Poisson Tree Processes analyses were conducted. In addition, a barcoding approach was used to further clarify species-level relationships by comparing frequency distributions between intra- and interspecific sequence divergence. The genus was recovered as monophyletic; however, species-delimitation results suggest that the current taxonomy does not reflect the evolutionary history of this group. For example, Philothamnus s. semivariegatus is paraphyletic, with at least four distinct clades. Philothamnus carinatus consists of two cryptic (sister) lineages from Central and West Africa that are deeply divergent, suggesting a long history of isolation between those regions. Furthermore, the subspecies P. n. natalensis and P. n. occidentalis show strong support for species-level divergence, which reflects their morphological and ecological differences. Accordingly, we elevate P. occidentalisnov. comb. to a full species. A fully informed taxonomic revision of these taxa will require additional morphological and ecological data for corroboration, but it seems that the morphological characters (e.g. scalation, dentition) used to describe these species to date are labile within and between species. This most likely has clouded our understanding of the species boundaries within the genus. Our phylogeny and species-delimitation analyses should provide a sounder framework for taxonomy, but may also prove useful toward understanding the morphological adaptations of these species to their respective habitats.


Subject(s)
Colubridae/genetics , Genetic Variation , Africa, Western , Animals , Bayes Theorem , Geography , Likelihood Functions , Phylogeny , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...