Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1339750, 2024.
Article in English | MEDLINE | ID: mdl-38343887

ABSTRACT

Infecting about half of the world´s population, Helicobacter pylori is one of the most prevalent bacterial infections worldwide and the strongest known risk factor for gastric cancer. Although H. pylori colonizes exclusively the gastric epithelium, the infection has also been associated with various extragastric diseases, including colorectal cancer (CRC). Epidemiological studies reported an almost two-fold increased risk for infected individuals to develop CRC, but only recently, direct causal and functional links between the chronic infection and CRC have been revealed. Besides modulating the host intestinal immune response, H. pylori is thought to increase CRC risk by inducing gut microbiota alterations. It is known that H. pylori infection not only impacts the gastric microbiota at the site of infection but also leads to changes in bacterial colonization in the distal large intestine. Considering that the gut microbiome plays a driving role in CRC, H. pylori infection emerges as a key factor responsible for promoting changes in microbiome signatures that could contribute to tumor development. Within this review, we want to focus on the interplay between H. pylori infection, changes in the intestinal microbiota, and intestinal immunity. In addition, the effects of H. pylori antibiotic eradication therapy will be discussed.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Stomach/microbiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology
2.
Gut ; 72(7): 1258-1270, 2023 07.
Article in English | MEDLINE | ID: mdl-37015754

ABSTRACT

OBJECTIVE: Helicobacter pylori infection is the most prevalent bacterial infection worldwide. Besides being the most important risk factor for gastric cancer development, epidemiological data show that infected individuals harbour a nearly twofold increased risk to develop colorectal cancer (CRC). However, a direct causal and functional connection between H. pylori infection and colon cancer is lacking. DESIGN: We infected two Apc-mutant mouse models and C57BL/6 mice with H. pylori and conducted a comprehensive analysis of H. pylori-induced changes in intestinal immune responses and epithelial signatures via flow cytometry, chip cytometry, immunohistochemistry and single cell RNA sequencing. Microbial signatures were characterised and evaluated in germ-free mice and via stool transfer experiments. RESULTS: H. pylori infection accelerated tumour development in Apc-mutant mice. We identified a unique H. pylori-driven immune alteration signature characterised by a reduction in regulatory T cells and pro-inflammatory T cells. Furthermore, in the intestinal and colonic epithelium, H. pylori induced pro-carcinogenic STAT3 signalling and a loss of goblet cells, changes that have been shown to contribute-in combination with pro-inflammatory and mucus degrading microbial signatures-to tumour development. Similar immune and epithelial alterations were found in human colon biopsies from H. pylori-infected patients. Housing of Apc-mutant mice under germ-free conditions ameliorated, and early antibiotic eradication of H. pylori infection normalised the tumour incidence to the level of uninfected controls. CONCLUSIONS: Our studies provide evidence that H. pylori infection is a strong causal promoter of colorectal carcinogenesis. Therefore, implementation of H. pylori status into preventive measures of CRC should be considered.


Subject(s)
Colonic Neoplasms , Helicobacter Infections , Helicobacter pylori , Microbiota , Stomach Neoplasms , Humans , Mice , Animals , Helicobacter pylori/genetics , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Mice, Inbred C57BL , Carcinogenesis/pathology , Stomach Neoplasms/pathology , Colonic Neoplasms/pathology , Mucus , Gastric Mucosa/pathology
3.
Gastroenterology ; 164(4): 550-566, 2023 04.
Article in English | MEDLINE | ID: mdl-36587707

ABSTRACT

BACKGROUND & AIMS: Infection with Helicobacter pylori strongly affects global health by causing chronic gastritis, ulcer disease, and gastric cancer. Although extensive research into the strong immune response against this persistently colonizing bacterium exists, the specific role of CD8+ T cells remains elusive. METHODS: We comprehensively characterize gastric H pylori-specific CD8+ T-cell responses in mice and humans by flow cytometry, RNA-sequencing, immunohistochemistry, and ChipCytometry, applying functional analyses including T-cell depletion, H pylori eradication, and ex vivo restimulation. RESULTS: We define CD8+ T-cell populations bearing a tissue-resident memory (TRM) phenotype, which infiltrate the gastric mucosa shortly after infection and mediate pathogen control by executing antigen-specific effector properties. These induced CD8+ tissue-resident memory T cells (TRM cells) show a skewed T-cell receptor beta chain usage and are mostly specific for cytotoxin-associated gene A, the distinctive oncoprotein injected by H pylori into host cells. As the infection progresses, we observe a loss of the TRM phenotype and replacement of CD8+ by CD4+ T cells, indicating a shift in the immune response during the chronic infection phase. CONCLUSIONS: Our results point toward a hitherto unknown role of CD8+ T-cell response in this bacterial infection, which may have important clinical implications for treatment and vaccination strategies against H pylori.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Animals , Mice , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Stomach , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Antigens, Bacterial , Bacterial Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...