Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Front Aging ; 5: 1352299, 2024.
Article in English | MEDLINE | ID: mdl-38501032

ABSTRACT

Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.

2.
Microbiome ; 12(1): 31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383483

ABSTRACT

BACKGROUND: People living with HIV (PLWH), even when viral replication is controlled through antiretroviral therapy (ART), experience persistent inflammation. This inflammation is partly attributed to intestinal microbial dysbiosis and translocation, which may lead to non-AIDS-related aging-associated comorbidities. The extent to which living with HIV - influenced by the infection itself, ART usage, sexual orientation, or other associated factors - affects the biological age of the intestines is unclear. Furthermore, the role of microbial dysbiosis and translocation in the biological aging of PLWH remains to be elucidated. To investigate these uncertainties, we used a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PLWH on ART and people living without HIV (PLWoH) as controls. RESULTS: PLWH exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to PLWoH. Investigating the relationship between microbial translocation and biological aging, PLWH had decreased levels of tight junction proteins in the intestines, along with increased microbial translocation. This intestinal permeability correlated with faster biological aging and increased inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PLWH had higher abundance of specific pro-inflammatory bacteria, such as Catenibacterium and Prevotella. These bacteria correlated with accelerated biological aging. Conversely, the intestines of PLWH had lower abundance of bacteria known for producing the anti-inflammatory short-chain fatty acids, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbe-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid. CONCLUSIONS: We identified specific microbial compositions and microbiota-related metabolic pathways that are intertwined with intestinal and systemic biological aging. This microbial signature of biological aging is likely reflecting various factors including the HIV infection itself, ART usage, sexual orientation, and other aspects associated with living with HIV. A deeper understanding of the mechanisms underlying these connections could offer potential strategies to mitigate accelerated aging and its associated health complications. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , HIV Infections , Humans , Female , Male , HIV Infections/drug therapy , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Aging , Bacteria/genetics , Inflammation/microbiology , Anti-Inflammatory Agents
3.
Res Sq ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961645

ABSTRACT

Background: People with HIV (PWH), even with controlled viral replication through antiretroviral therapy (ART), experience persistent inflammation. This is partly due to intestinal microbial dysbiosis and translocation. Such ongoing inflammation may lead to the development of non-AIDS-related aging-associated comorbidities. However, there remains uncertainty regarding whether HIV affects the biological age of the intestines and whether microbial dysbiosis and translocation influence the biological aging process in PWH on ART. To fill this knowledge gap, we utilized a systems biology approach, analyzing colon and ileal biopsies, blood samples, and stool specimens from PWH on ART and their matched HIV-negative counterparts. Results: Despite having similar chronological ages, PWH on ART exhibit accelerated biological aging in the colon, ileum, and blood, as measured by various epigenetic aging clocks, compared to HIV-negative controls. Investigating the relationship between microbial translocation and biological aging, PWH on ART had decreased levels of tight junction proteins in the colon and ileum, along with increased microbial translocation. This increased intestinal permeability correlated with faster intestinal and systemic biological aging, as well as increased systemic inflammation. When investigating the relationship between microbial dysbiosis and biological aging, the intestines of PWH on ART had higher abundance of specific pro-inflammatory bacterial genera, such as Catenibacterium and Prevotella. These bacteria significantly correlated with accelerated local and systemic biological aging. Conversely, the intestines of PWH on ART had lower abundance of bacterial genera known for producing short-chain fatty acids and exhibiting anti-inflammatory properties, such as Subdoligranulum and Erysipelotrichaceae, and these bacteria taxa were associated with slower biological aging. Correlation networks revealed significant links between specific microbial genera in the colon and ileum (but not in feces), increased aging, a rise in pro-inflammatory microbial-related metabolites (e.g., those in the tryptophan metabolism pathway), and a decrease in anti-inflammatory metabolites like hippuric acid and oleic acid. Conclusions: We identified a specific microbial composition and microbiome-related metabolic pathways that are intertwined with both intestinal and systemic biological aging in PWH on ART. A deeper understanding of the mechanisms underlying these connections could potentially offer strategies to counteract premature aging and its associated health complications in PWH.

4.
Nat Commun ; 14(1): 926, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36801916

ABSTRACT

A pro-inflammatory intestinal microbiome is characteristic of Parkinson's disease (PD). Prebiotic fibers change the microbiome and this study sought to understand the utility of prebiotic fibers for use in PD patients. The first experiments demonstrate that fermentation of PD patient stool with prebiotic fibers increased the production of beneficial metabolites (short chain fatty acids, SCFA) and changed the microbiota demonstrating the capacity of PD microbiota to respond favorably to prebiotics. Subsequently, an open-label, non-randomized study was conducted in newly diagnosed, non-medicated (n = 10) and treated PD participants (n = 10) wherein the impact of 10 days of prebiotic intervention was evaluated. Outcomes demonstrate that the prebiotic intervention was well tolerated (primary outcome) and safe (secondary outcome) in PD participants and was associated with beneficial biological changes in the microbiota, SCFA, inflammation, and neurofilament light chain. Exploratory analyses indicate effects on clinically relevant outcomes. This proof-of-concept study offers the scientific rationale for placebo-controlled trials using prebiotic fibers in PD patients. ClinicalTrials.gov Identifier: NCT04512599.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Prebiotics , Feces , Fatty Acids, Volatile/metabolism
5.
Mov Disord ; 38(3): 399-409, 2023 03.
Article in English | MEDLINE | ID: mdl-36691982

ABSTRACT

BACKGROUND: The gut microbiome is altered in several neurologic disorders, including Parkinson's disease (PD). OBJECTIVES: The aim is to profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression. METHODS: Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n = 48, n = 47, respectively), environmental household controls (HC, n = 29, n = 30), and community population controls (PC, n = 41, n = 49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic data sets from two previous studies in Germany and China to determine generalizable microbiome features. RESULTS: We find several significantly altered taxa between PD and controls within the two cohorts sequenced in this study. Analysis across global cohorts returns consistent changes only in Intestinimonas butyriciproducens. Pathway enrichment analysis reveals disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism in PD. Global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted intercommunity signaling. CONCLUSIONS: A metagenomic meta-analysis of PD shows consistent and novel alterations in functional metabolic potential and microbial gene abundance across four independent studies from three continents. These data reveal that stereotypic changes in the functional potential of the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Metagenome/genetics , Cohort Studies , Gastrointestinal Microbiome/genetics , Feces
6.
Inflamm Bowel Dis ; 29(3): 444-457, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36287037

ABSTRACT

BACKGROUND: Disruption of central circadian rhythms likely mediated by changes in microbiota and a decrease in gut-derived metabolites like short chain fatty acids (SCFAs) negatively impacts colonic barrier homeostasis. We aimed to explore the effects of isolated peripheral colonic circadian disruption on the colonic barrier in a mouse model of colitis and explore the mechanisms, including intestinal microbiota community structure and function. METHODS: Colon epithelial cell circadian rhythms were conditionally genetically disrupted in mice: TS4Cre-BMAL1lox (cBMAL1KO) with TS4Cre as control animals. Colitis was induced through 5 days of 2% dextran sulfate sodium (DSS). Disease activity index and intestinal barrier were assessed, as were fecal microbiota and metabolites. RESULTS: Colitis symptoms were worse in mice with peripheral circadian disruption (cBMAL1KO). Specifically, the disease activity index and intestinal permeability were significantly higher in circadian-disrupted mice compared with control animals (TS4Cre) (P < .05). The worsening of colitis appears to be mediated, in part, through JAK (Janus kinase)-mediated STAT3 (signal transducer and activator of transcription 3), which was significantly elevated in circadian-disrupted (cBMAL1KO) mice treated with DSS (P < .05). Circadian-disrupted (cBMAL1KO) mice also had decreased SCFA metabolite concentrations and decreased relative abundances of SCFA-producing bacteria in their stool when compared with control animals (TS4Cre). CONCLUSIONS: Disruption of intestinal circadian rhythms in colonic epithelial cells promoted more severe colitis, increased inflammatory mediators (STAT3 [signal transducer and activator of transcription 3]), and decreased gut microbiota-derived SCFAs compared with DSS alone. Further investigation elucidating the molecular mechanisms behind these findings could provide novel circadian directed targets and strategies in the treatment of inflammatory bowel disease.


Disruption of peripheral circadian rhythms of the colon epithelium results in worse colitis and increased intestinal permeability in mice when given dextran sulfate sodium. This may be mediated through alterations in microbiota, butyrate levels, and STAT3.


Subject(s)
Colitis , STAT3 Transcription Factor , Mice , Animals , Dextran Sulfate/adverse effects , STAT3 Transcription Factor/metabolism , Colitis/chemically induced , Colon/metabolism , Feces , Disease Models, Animal , Mice, Inbred C57BL
7.
Microorganisms ; 10(10)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36296272

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic began in January 2020 in Wuhan, China, with a new coronavirus designated SARS-CoV-2. The principal cause of death from COVID-19 disease quickly emerged as acute respiratory distress syndrome (ARDS). A key ARDS pathogenic mechanism is the "Cytokine Storm", which is a dramatic increase in inflammatory cytokines in the blood. In the last two years of the pandemic, a new pathology has emerged in some COVID-19 survivors, in which a variety of long-term symptoms occur, a condition called post-acute sequelae of COVID-19 (PASC) or "Long COVID". Therefore, there is an urgent need to better understand the mechanisms of the virus. The spike protein on the surface of the virus is composed of joined S1-S2 subunits. Upon S1 binding to the ACE2 receptor on human cells, the S1 subunit is cleaved and the S2 subunit mediates the entry of the virus. The S1 protein is then released into the blood, which might be one of the pivotal triggers for the initiation and/or perpetuation of the cytokine storm. In this study, we tested the hypothesis that the S1 spike protein is sufficient to activate inflammatory signaling and cytokine production, independent of the virus. Our data support a possible role for the S1 spike protein in the activation of inflammatory signaling and cytokine production in human lung and intestinal epithelial cells in culture. These data support a potential role for the SARS-CoV-2 S1 spike protein in COVID-19 pathogenesis and PASC.

8.
Front Aging ; 3: 916336, 2022.
Article in English | MEDLINE | ID: mdl-36046496

ABSTRACT

Introduction: Alzheimer's disease (AD) is a devastating neurodegenerative disorder. While genetics are important in the development of AD, environment and lifestyle are also important factors influencing AD. One such lifestyle factor is alcohol consumption. Unhealthy and excessive chronic alcohol consumption is associated with a greater risk of all types of dementia, especially AD. Alcohol consumption has numerous effects on the body, including alterations to the intestinal microbiota (dysbiosis) and intestinal barrier dysfunction (leakiness and intestinal hyperpermeability), with evidence indicating that inflammation resulting from dysbiosis and barrier dysfunction can promote neuroinflammation impacting brain structure and function. Objective: This study sought to determine the impact of alcohol-induced dysbiosis and barrier dysfunction on AD-like behavior and brain pathology using a transgenic rodent model of AD (3xTg-AD). Methods: Alcohol (20%) was administered to 3xTg-AD mice in the drinking water for 20 weeks. Intestinal (stool) microbiota, intestinal barrier permeability, systemic inflammation (IL-6), behavior, and AD pathology (phosphorylated tau and ß-amyloid), and microglia were examined. Results: Alcohol consumption changed the intestinal microbiota community (dysbiosis) and increased intestinal barrier permeability in both control and 3xTg-AD mice (oral/urine sugar test and lipopolysaccharide-binding protein (LBP)). However, alcohol consumption did not influence serum IL-6, behavior, or ß-amyloid, phosphorylated tau, or microglia in 3xTg-AD mice. Important differences in genotype and sex were noted. Conclusion: Alcohol-induced microbiota dysbiosis and intestinal barrier dysfunction did not exacerbate behavior or AD-like brain pathology in the 3xTg-AD mouse model of AD which could, in part, be the result of a lack of systemic inflammation.

9.
Neurobiol Dis ; 170: 105780, 2022 08.
Article in English | MEDLINE | ID: mdl-35654277

ABSTRACT

There is growing appreciation of the importance of the intestinal microbiota in Parkinson's disease (PD), and one potential mechanism by which the intestinal microbiota can communicate with the brain is via bacteria-derived metabolites. In this study, plasma levels of bacterial-derived metabolites including trimethylamine-N-oxide (TMAO), short chain fatty acids (SCFA), the branched chain fatty acid isovalerate, succinate, and lactate were evaluated in PD subjects (treatment naïve and treated) which were compared to (1) population controls, (2) spousal / household controls (similar lifestyle to PD subjects), and (3) subjects with multiple system atrophy (MSA). Analyses revealed an increase in the TMAO pathway in PD subjects which was independent of medication status, disease characteristics, and lifestyle. Lactic acid was decreased in treated PD subjects, succinic acid positively correlated with disease severity, and the ratio of pro-inflammatory TMAO to the putative anti-inflammatory metabolite butyric acid was significantly higher in PD subjects compared to controls indicating a pro-inflammatory shift in the metabolite profile in PD subjects. Finally, acetic and butyric acid were different between PD and MSA subjects indicating that metabolites may differentiate these synucleinopathies. In summary, (1) TMAO is elevated in PD subjects, a phenomenon independent of disease characteristics, treatment status, and lifestyle and (2) metabolites may differentiate PD and MSA subjects. Additional studies to understand the potential of TMAO and other bacterial metabolites to serve as a biomarker or therapeutic targets are warranted.


Subject(s)
Gastrointestinal Microbiome , Multiple System Atrophy , Parkinson Disease , Bacteria , Butyrates , Humans , Life Style , Parkinson Disease/therapy
10.
Front Neurol ; 13: 882628, 2022.
Article in English | MEDLINE | ID: mdl-35665034

ABSTRACT

Introduction: Parkinson's disease (PD) is the second most common neurodegenerative disease associated with aging. PD patients have systemic and neuroinflammation which is hypothesized to contribute to neurodegeneration. Recent studies highlight the importance of the gut-brain axis in PD pathogenesis and suggest that gut-derived inflammation can trigger and/or promote neuroinflammation and neurodegeneration in PD. However, it is not clear whether microbiota dysbiosis, intestinal barrier dysfunction, or intestinal inflammation (common features in PD patients) are primary drivers of disrupted gut-brain axis in PD that promote neuroinflammation and neurodegeneration. Objective: To determine the role of microbiota dysbiosis, intestinal barrier dysfunction, and colonic inflammation in neuroinflammation and neurodegeneration in a genetic rodent model of PD [α-synuclein overexpressing (ASO) mice]. Methods: To distinguish the role of intestinal barrier dysfunction separate from inflammation, low dose (1%) dextran sodium sulfate (DSS) was administered in cycles for 52 days to ASO and control mice. The outcomes assessed included intestinal barrier integrity, intestinal inflammation, stool microbiome community, systemic inflammation, motor function, microglial activation, and dopaminergic neurons. Results: Low dose DSS treatment caused intestinal barrier dysfunction (sugar test, histological analysis), intestinal microbiota dysbiosis, mild intestinal inflammation (colon shortening, elevated MPO), but it did not increase systemic inflammation (serum cytokines). However, DSS did not exacerbate motor dysfunction, neuroinflammation (microglial activation), or dopaminergic neuron loss in ASO mice. Conclusion: Disruption of the intestinal barrier without overt intestinal inflammation is not associated with worsening of PD-like behavior and pathology in ASO mice.

11.
FASEB J ; 36(1): e22043, 2022 01.
Article in English | MEDLINE | ID: mdl-34861073

ABSTRACT

Circadian misalignment-the misalignment between the central circadian "clock" and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)-results in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 ± 2.3 years (18-35 years), 4 men and 2 women, body-mass index range: 18-28 kg/m2 ] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h "days" under ~3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers.


Subject(s)
Circadian Rhythm , Microbiota , Mouth/microbiology , Saliva/microbiology , Shift Work Schedule , Adolescent , Adult , Female , Humans , Male , Proof of Concept Study
12.
NPJ Parkinsons Dis ; 7(1): 111, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34880258

ABSTRACT

Olfactory dysfunction is a pre-motor symptom of Parkinson's disease (PD) that appears years prior to diagnosis and can affect quality of life in PD. Changes in microbiota community in deep nasal cavity near the olfactory bulb may trigger the olfactory bulb-mediated neuroinflammatory cascade and eventual dopamine loss in PD. To determine if the deep nasal cavity microbiota of PD is significantly altered in comparison to healthy controls, we characterized the microbiota of the deep nasal cavity using 16S rRNA gene amplicon sequencing in PD subjects and compared it to that of spousal and non-spousal healthy controls. Correlations between microbial taxa and PD symptom severity were also explored. Olfactory microbial communities of PD individuals were more similar to those of their spousal controls than to non-household controls. In direct comparison of PD and spousal controls and of PD and non-spousal controls, significantly differently abundant taxa were identified, and this included increased relative abundance of putative opportunistic-pathobiont species such as Moraxella catarrhalis. M. catarrhalis was also significantly correlated with more severe motor scores in PD subjects. This proof-of-concept study provides evidence that potential pathobionts are detected in the olfactory bulb and that a subset of changes in the PD microbiota community could be a consequence of unique environmental factors associated with PD living. We hypothesize that an altered deep nasal microbiota, characterized by a putative pro-inflammatory microbial community, could trigger neuroinflammation in PD.

13.
Front Neurosci ; 15: 660942, 2021.
Article in English | MEDLINE | ID: mdl-34276285

ABSTRACT

The incretin hormone glucagon-like peptide 1 (GLP-1) has neuroprotective effects in animal models of Parkinson's disease (PD), and GLP-1 receptor agonists are associated with clinical improvements in human PD patients. GLP-1 is produced and secreted by intestinal L-cells in response to consumption of a meal. Specifically, intestinal microbiota produce short chain fatty acids (SCFA) which, in turn, promote secretion of GLP-1 into the systemic circulation, from which it can enter the brain. Our group and others have reported that PD patients have an altered intestinal microbial community that produces less SCFA compared to age-matched controls. In this report, we demonstrate that PD patients have diminished GLP-1 secretion in response to a meal compared to their household controls. Peak postprandial GLP-1 levels did not correlate with PD disease severity, motor function, or disease duration. These data provide the scientific rationale for future studies designed to elucidate the role of GLP-1 in the pathogenesis of PD and test the potential utility of GLP-1-directed therapies.

14.
Biol Proced Online ; 23(1): 10, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34058978

ABSTRACT

We investigated nasopharyngeal microbial community structure in COVID-19-positive and -negative patients. High-throughput 16S ribosomal RNA gene amplicon sequencing revealed significant microbial community structure differences between COVID-19-positive and -negative patients. This proof-of-concept study demonstrates that: (1) nasopharyngeal microbiome communities can be assessed using collection samples already collected for SARS-CoV-2 testing (viral transport media) and (2) SARS-CoV-2 infection is associated with altered dysbiotic microbial profiles which could be a biomarker for disease progression and prognosis in SARS-CoV-2.

15.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810380

ABSTRACT

The mechanism underlying the allergy-protective effects of raw cow's milk is still unknown, but the modulation of the gut microbiome may play a role. The effects of consuming raw cow's milk or processed milk on fecal microbial communities were therefore characterized in an experimental murine model. C3H/HeOuJ mice were treated with raw milk, pasteurized milk, skimmed raw milk, pasteurized milk supplemented with alkaline phosphatase (ALP), or phosphate-buffered saline (PBS) for eight days prior to sensitization and challenge with ovalbumin (OVA). Fecal samples were collected after milk exposure and after OVA sensitization, and microbiomes were characterized using 16S ribosomal RNA gene amplicon sequencing. Treatment with raw milk prior to OVA sensitization increased the relative abundance of putative butyrate-producing bacteria from the taxa Lachnospiraceae UCG-001, Lachnospiraceae UCG-008, and Ruminiclostridium 5 (Clostridial clusters XIVa and IV), while it decreased the relative abundance of Proteobacterial genera such as Parasutterella, a putative pro-inflammatory bacterial genus. This effect was observed after eight days of raw milk exposure and became more pronounced five weeks later, after allergic sensitization in the absence of milk. Similar trends were observed after treatment with skimmed raw milk. Conversely, the feeding of pasteurized milk led to a loss of allergy protection and a putative dysbiotic microbiome. The addition of ALP to pasteurized milk restored the protective effect observed with raw milk and mitigated some of the microbial community alterations associated with milk pasteurization. Raw milk-induced protection against food allergic symptoms in mice is accompanied by an increased relative abundance of putative butyrate-producing Clostridiales and a decreased relative abundance of putative pro-inflammatory Proteobacteria. Given the safety concerns regarding raw milk consumption, this knowledge is key for the development of new, microbiologically safe, preventive strategies to reduce the incidence of allergic diseases.


Subject(s)
Food Hypersensitivity/prevention & control , Gastrointestinal Microbiome , Milk/immunology , Animals , Food Hypersensitivity/immunology , Food Hypersensitivity/microbiology , Mice , Milk/microbiology , Pasteurization
16.
Front Med (Lausanne) ; 8: 770491, 2021.
Article in English | MEDLINE | ID: mdl-35265631

ABSTRACT

Patients with inflammatory bowel disease (IBD)-Crohn's disease (CD), and ulcerative colitis (UC), have poor sleep quality. Sleep and multiple immunologic and gastrointestinal processes in the body are orchestrated by the circadian clock, and we recently reported that a later category or chronotype of the circadian clock was associated with worse IBD specific outcomes. The goal of this study was to determine if circadian misalignment by rest-activity cycles is associated with markers of aggressive disease, subclinical inflammation, and dysbiosis in IBD. A total of 42 patients with inactive but biopsy-proven CD or UC and 10 healthy controls participated in this prospective cohort study. Subjects were defined as having an aggressive IBD disease history (steroid dependence, use of biologic or immunomodulator, and/or surgery) or non-aggressive history. All participants did two weeks of wrist actigraphy, followed by measurement of intestinal permeability and stool microbiota. Wrist actigraphy was used to calculate circadian markers of rest-activity- interdaily stability (IS), intradaily variability (IV), and relative amplitude (RA). Aggressive IBD history was associated with decrease rest-activity stability (IS) and increased fragmentation compared to non-aggressive IBD and health controls at 0.39 ±.15 vs. 0.51 ± 0.10 vs. 0.55 ± 0.09 (P < 0.05) and 0.83 ± 0.20 vs. 0.72 ± 0.14 (P < 0.05) but not HC at 0.72 ± 0.14 (P = 0.08); respectively. There was not a significant difference in RA by IBD disease history. Increased intestinal permeability and increased TNF-α levels correlated with an increased rest activity fragmentation (IV) at R = 0.35, P < 0.05 and R = 0.37, P < 0.05, respectively; and decreased rest-activity amplitude (RA) was associated with increased stool calprotectin at R = 0.40, P < 0.05. Analysis of intestinal microbiota showed a significant decrease in commensal butyrate producing taxa and increased pro-inflammatory bacteria with disrupted rest-activity cycles. In this study, different components of circadian misalignment by rest-activity cycles were associated with a more aggressive IBD disease history, increased intestinal permeability, stool calprotectin, increased pro-inflammatory cytokines, and dysbiosis. Wrist activity allows for an easy non-invasive assessment of circadian activity which may be an important biomarker of inflammation in IB.

17.
Nutrients ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35011046

ABSTRACT

The composition and activity of the intestinal microbial community structures can be beneficially modulated by nutritional components such as non-digestible oligosaccharides and omega-3 poly-unsaturated fatty acids (n-3 PUFAs). These components affect immune function, brain development and behaviour. We investigated the additive effect of a dietary combination of scGOS:lcFOS and n-3 PUFAs on caecal content microbial community structures and development of the immune system, brain and behaviour from day of birth to early adulthood in healthy mice. Male BALB/cByJ mice received a control or enriched diet with a combination of scGOS:lcFOS (9:1) and 6% tuna oil (n-3 PUFAs) or individually scGOS:lcFOS (9:1) or 6% tuna oil (n-3 PUFAs). Behaviour, caecal content microbiota composition, short-chain fatty acid levels, brain monoamine levels, enterochromaffin cells and immune parameters in the mesenteric lymph nodes (MLN) and spleen were assessed. Caecal content microbial community structures displayed differences between the control and dietary groups, and between the dietary groups. Compared to control diet, the scGOS:lcFOS and combination diets increased caecal saccharolytic fermentation activity. The diets enhanced the number of enterochromaffin cells. The combination diet had no effects on the immune cells. Although the dietary effect on behaviour was limited, serotonin and serotonin metabolite levels in the amygdala were increased in the combination diet group. The combination and individual interventions affected caecal content microbial profiles, but had limited effects on behaviour and the immune system. No apparent additive effect was observed when scGOS:lcFOS and n-3 PUFAs were combined. The results suggest that scGOS:lcFOS and n-3 PUFAs together create a balance-the best of both in a healthy host.


Subject(s)
Brain/drug effects , Brain/immunology , Dietary Supplements , Eating/physiology , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Immune System/drug effects , Immune System/immunology , Intestines/drug effects , Intestines/immunology , Oligosaccharides/administration & dosage , Oligosaccharides/pharmacology , Animals , Female , Male , Mice, Inbred BALB C , Microbiota/drug effects , Microbiota/immunology , Pregnancy
18.
Transl Res ; 231: 113-123, 2021 05.
Article in English | MEDLINE | ID: mdl-33221482

ABSTRACT

Obesity has become a common rising health care problem, especially in "modern" societies. Obesity is considered a low-grade systemic inflammation, partly linked to leaky gut. Circadian rhythm disruption, a common habit in modern life, has been reported to cause gut barrier impairment. Abnormal time of eating, defined by eating close to or during rest time, is shown to cause circadian rhythm disruption. Here, using a non-obesogenic diet, we found that abnormal feeding time facilitated weight gain and induced metabolic dysregulation in mice. The effect of abnormal time of eating was associated with increased gut permeability, estimated by sucralose and/or lactulose ratio and disrupted intestinal barrier marker. Analysis of gut microbiota and their metabolites, as important regulators of barrier homeostasis, revealed that abnormal food timing reduced relative abundance of butyrate-producing bacteria, and the colonic butyrate level. Overall, our data supported that dysbiosis was characterized by increased intestinal permeability and decreased beneficial barrier butyrate-producing bacteria and/or metabolite to mechanistically link the time of eating to obesity. This data provides basis for noninvasive microbial-targeted interventions to improve intestinal barrier function as new opportunities for combating circadian rhythm disruption induced metabolic dysfunction.


Subject(s)
Animal Husbandry , Circadian Rhythm , Gastrointestinal Microbiome , Obesity/metabolism , Weight Gain , Animals , Biomarkers , Blood Glucose , Cadherins/metabolism , Colon/metabolism , Food , Glucose/metabolism , Insulin/blood , Insulin/metabolism , Leptin/blood , Leptin/metabolism , Male , Mice , Mice, Inbred C57BL , Random Allocation , Time Factors
19.
Front Neurol ; 11: 978, 2020.
Article in English | MEDLINE | ID: mdl-33013647

ABSTRACT

Emerging evidence suggests intestinal microbiota as a central contributing factor to the pathogenesis of Relapsing-Remitting-Multiple-Sclerosis (RRMS). This novel RRMS study evaluated the impact of fecal-microbiota-transplantation (FMT) on a broad array of physiological/clinical outcomes using deep metagenome sequencing of fecal microbiome. FMT interventions were associated with increased abundances of putative beneficial stool bacteria and short-chain-fatty-acid metabolites, which were associated with increased/improved serum brain-derived-neurotrophic-factor levels and gait/walking metrics. This proof-of-concept single-subject longitudinal study provides evidence of potential importance of intestinal microbiota in the pathogenesis of MS, and scientific rationale to help design future randomized controlled trials assessing FMT in RRMS patients.

20.
FASEB J ; 34(11): 14302-14317, 2020 11.
Article in English | MEDLINE | ID: mdl-32931052

ABSTRACT

Particles released from implants cause inflammatory bone loss, which is a key factor in aseptic loosening, the most common reason for joint replacement failure. With the anticipated increased incidence of total joint replacement in the next decade, implant failure will continue to burden patients. The gut microbiome is increasingly recognized as an important factor in bone physiology, however, its role in implant loosening is currently unknown. We tested the hypothesis that implant loosening is associated with changes in the gut microbiota in a preclinical model. When the particle challenge caused local joint inflammation, decreased peri-implant bone volume, and decreased implant fixation, the gut microbiota was affected. When the particle challenge did not cause this triad of local effects, the gut microbiota was not affected. Our results suggest that cross-talk between these compartments is a previously unrecognized mechanism of failure following total joint replacement.


Subject(s)
Gastrointestinal Microbiome , Inflammation/pathology , Osteolysis/pathology , Prostheses and Implants/adverse effects , Prosthesis-Related Infections/pathology , Animals , Inflammation/etiology , Male , Osteolysis/etiology , Prosthesis-Related Infections/etiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL