Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109527, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38585658

ABSTRACT

Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.

2.
J Neurodev Disord ; 16(1): 2, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38166599

ABSTRACT

BACKGROUND: Individuals with autism spectrum disorders (ASD) often exhibit altered sensory processing and deficits in language development. Prenatal exposure to valproic acid (VPA) increases the risk for ASD and impairs both receptive and expressive language. Like individuals with ASD, rodents prenatally exposed to VPA exhibit degraded auditory cortical processing and abnormal neural activity to sounds. Disrupted neuronal morphology has been documented in earlier processing areas of the auditory pathway in VPA-exposed rodents, but there are no studies documenting early auditory pathway physiology. Therefore, the objective of this study is to characterize inferior colliculus (IC) responses to different sounds in rats prenatally exposed to VPA compared to saline-exposed rats. METHODS: In vivo extracellular multiunit recordings from the inferior colliculus were collected in response to tones, speech sounds, and noise burst trains. RESULTS: Our results indicate that the overall response to speech sounds was degraded in VPA-exposed rats compared to saline-exposed controls, but responses to tones and noise burst trains were unaltered. CONCLUSIONS: These results are consistent with observations in individuals with autism that neural responses to complex sounds, like speech, are often altered, and lays the foundation for future studies of potential therapeutics to improve auditory processing in the VPA rat model of ASD.


Subject(s)
Autism Spectrum Disorder , Inferior Colliculi , Pregnancy , Female , Rats , Animals , Valproic Acid/pharmacology , Inferior Colliculi/metabolism , Rats, Sprague-Dawley , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/metabolism , Auditory Perception/physiology
3.
Front Neurosci ; 17: 1248936, 2023.
Article in English | MEDLINE | ID: mdl-37732302

ABSTRACT

Introduction: Repeatedly pairing a tone with vagus nerve stimulation (VNS) alters frequency tuning across the auditory pathway. Pairing VNS with speech sounds selectively enhances the primary auditory cortex response to the paired sounds. It is not yet known how altering the speech sounds paired with VNS alters responses. In this study, we test the hypothesis that the sounds that are presented and paired with VNS will influence the neural plasticity observed following VNS-sound pairing. Methods: To explore the relationship between acoustic experience and neural plasticity, responses were recorded from primary auditory cortex (A1) after VNS was repeatedly paired with the speech sounds 'rad' and 'lad' or paired with only the speech sound 'rad' while 'lad' was an unpaired background sound. Results: Pairing both sounds with VNS increased the response strength and neural discriminability of the paired sounds in the primary auditory cortex. Surprisingly, pairing only 'rad' with VNS did not alter A1 responses. Discussion: These results suggest that the specific acoustic contrasts associated with VNS can powerfully shape neural activity in the auditory pathway. Methods to promote plasticity in the central auditory system represent a new therapeutic avenue to treat auditory processing disorders. Understanding how different sound contrasts and neural activity patterns shape plasticity could have important clinical implications.

4.
Res Sq ; 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37577524

ABSTRACT

Background: Individuals with autism spectrum disorders (ASD) often exhibit altered sensory processing and deficits in language development. Prenatal exposure to valproic acid (VPA) increases the risk for ASD and impairs both receptive and expressive language. Like individuals with ASD, rodents prenatally exposed to VPA exhibit degraded auditory cortical processing and abnormal neural activity to sounds. Disrupted neuronal morphology has been documented in earlier processing areas of the auditory pathway in VPA-exposed rodents, but there are no studies documenting early auditory pathway physiology. Therefore, the objective of this study is to characterize inferior colliculus (IC) responses to different sounds in rats prenatally exposed to VPA compared to saline-exposed rats. Methods: Neural recordings from the inferior colliculus were collected in response to tones, speech sounds, and noise burst trains. Results: Our results indicate that the overall response to speech sounds was degraded in VPA-exposed rats compared saline-exposed controls, but responses to tones and noise burst trains were unaltered. Conclusions: These results are consistent with observations in individuals with autism that neural responses to complex sounds, like speech, are often altered, and lays the foundation for future studies of potential therapeutics to improve auditory processing in the VPA rat model of ASD.

5.
Front Neurosci ; 17: 1202258, 2023.
Article in English | MEDLINE | ID: mdl-37383105

ABSTRACT

Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ~95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.

6.
bioRxiv ; 2023 May 05.
Article in English | MEDLINE | ID: mdl-37205577

ABSTRACT

Intracortical microstimulation (ICMS) of the somatosensory cortex via penetrating microelectrode arrays (MEAs) can evoke cutaneous and proprioceptive sensations for restoration of perception in individuals with spinal cord injuries. However, ICMS current amplitudes needed to evoke these sensory percepts tend to change over time following implantation. Animal models have been used to investigate the mechanisms by which these changes occur and aid in the development of new engineering strategies to mitigate such changes. Non-human primates are commonly the animal of choice for investigating ICMS, but ethical concerns exist regarding their use. Rodents are a preferred animal model due to their availability, affordability, and ease of handling, but there are limited choices of behavioral tasks for investigating ICMS. In this study, we investigated the application of an innovative behavioral go/no-go paradigm capable of estimating ICMS-evoked sensory perception thresholds in freely moving rats. We divided animals into two groups, one receiving ICMS and a control group receiving auditory tones. Then, we trained the animals to nose-poke - a well-established behavioral task for rats - following either a suprathreshold ICMS current-controlled pulse train or frequency-controlled auditory tone. Animals received a sugar pellet reward when nose-poking correctly. When nose-poking incorrectly, animals received a mild air puff. After animals became proficient in this task, as defined by accuracy, precision, and other performance metrics, they continued to the next phase for perception threshold detection, where we varied the ICMS amplitude using a modified staircase method. Finally, we used non-linear regression to estimate perception thresholds. Results indicated that our behavioral protocol could estimate ICMS perception thresholds based on ∼95% accuracy of rat nose-poke responses to the conditioned stimulus. This behavioral paradigm provides a robust methodology for evaluating stimulation-evoked somatosensory percepts in rats comparable to the evaluation of auditory percepts. In future studies, this validated methodology can be used to study the performance of novel MEA device technologies on ICMS-evoked perception threshold stability using freely moving rats or to investigate information processing principles in neural circuits related to sensory perception discrimination.

7.
Article in English | MEDLINE | ID: mdl-36303861

ABSTRACT

Anxiety disorders affect a large percentage of individuals who have an autism spectrum disorder (ASD). In children with ASD, excessive anxiety is also linked to gastrointestinal problems, self-injurious behaviors, and depressive symptoms. Exposure-based cognitive behavioral therapies are effective treatments for anxiety disorders in children with ASD, but high relapse rates indicate the need for additional treatment strategies. This perspective discusses evidence from preclinical research, which indicates that vagus nerve stimulation (VNS) paired with exposure to fear-provoking stimuli and situations could offer benefits as an adjuvant treatment for anxiety disorders that coexist with ASD. Vagus nerve stimulation is approved for use in the treatment of epilepsy, depression, and more recently as an adjuvant in rehabilitative training following stroke. In preclinical models, VNS shows promise in simultaneously enhancing consolidation of extinction memories and reducing anxiety. In this review, we will present potential mechanisms by which VNS could treat fear and anxiety in ASD. We also discuss potential uses of VNS to treat depression and epilepsy in the context of ASD, and noninvasive methods to stimulate the vagus nerve.

8.
Neuroscience ; 477: 63-75, 2021 11 21.
Article in English | MEDLINE | ID: mdl-34634426

ABSTRACT

Intense noise exposure is a leading cause of hearing loss, which results in degraded speech sound discrimination ability, particularly in noisy environments. The development of an animal model of speech discrimination deficits due to noise induced hearing loss (NIHL) would enable testing of potential therapies to improve speech sound processing. Rats can accurately detect and discriminate human speech sounds in the presence of quiet and background noise. Further, it is known that profound hearing loss results in functional deafness in rats. In this study, we generated rats with a range of impairments which model the large range of hearing impairments observed in patients with NIHL. One month after noise exposure, we stratified rats into three distinct deficit groups based on their auditory brainstem response (ABR) thresholds. These groups exhibited markedly different behavioral outcomes across a range of tasks. Rats with moderate hearing loss (30 dB shifts in ABR threshold) were not impaired in speech sound detection or discrimination. Rats with severe hearing loss (55 dB shifts) were impaired at discriminating speech sounds in the presence of background noise. Rats with profound hearing loss (70 dB shifts) were unable to detect and discriminate speech sounds above chance level performance. Across groups, ABR threshold accurately predicted behavioral performance on all tasks. This model of long-term impaired speech discrimination in noise, demonstrated by the severe group, mimics the most common clinical presentation of NIHL and represents a useful tool for developing and improving interventions to target restoration of hearing.


Subject(s)
Hearing Loss, Noise-Induced , Speech Perception , Animals , Auditory Threshold , Evoked Potentials, Auditory, Brain Stem , Hearing , Humans , Noise/adverse effects , Rats
9.
J Neurodev Disord ; 12(1): 27, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32988374

ABSTRACT

BACKGROUND: Rett syndrome is an X-linked neurodevelopmental disorder caused by a mutation in the gene MECP2. Individuals with Rett syndrome display developmental regression at an early age, and develop a range of motor, auditory, cognitive, and social impairments. Several studies have successfully modeled some aspects of dysfunction and Rett syndrome-like phenotypes in transgenic mouse and rat models bearing mutations in the MECP2 gene. Here, we sought to extend these findings and characterize skilled learning, a more complex behavior known to be altered in Rett syndrome. METHODS: We evaluated the acquisition and performance of auditory and motor function on two complex tasks in heterozygous female Mecp2 rats. Animals were trained to perform a speech discrimination task or a skilled forelimb reaching task. RESULTS: Our results reveal that Mecp2 rats display slower acquisition and reduced performance on an auditory discrimination task than wild-type (WT) littermates. Similarly, Mecp2 rats exhibit impaired learning rates and worse performance on a skilled forelimb motor task compared to WT. CONCLUSIONS: Together, these findings illustrate novel deficits in skilled learning consistent with clinical manifestation of Rett syndrome and provide a framework for development of therapeutic strategies to improve these complex behaviors.


Subject(s)
Rett Syndrome , Animals , Auditory Perception , Female , Learning , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Transgenic , Rats , Rett Syndrome/complications , Rett Syndrome/genetics
10.
Brain Stimul ; 13(6): 1494-1503, 2020.
Article in English | MEDLINE | ID: mdl-32800964

ABSTRACT

BACKGROUND: Rett syndrome is a rare neurological disorder associated with a mutation in the X-linked gene MECP2. This disorder mainly affects females, who typically have seemingly normal early development followed by a regression of acquired skills. The rodent Mecp2 model exhibits many of the classic neural abnormalities and behavioral deficits observed in individuals with Rett syndrome. Similar to individuals with Rett syndrome, both auditory discrimination ability and auditory cortical responses are impaired in heterozygous Mecp2 rats. The development of therapies that can enhance plasticity in auditory networks and improve auditory processing has the potential to impact the lives of individuals with Rett syndrome. Evidence suggests that precisely timed vagus nerve stimulation (VNS) paired with sound presentation can drive robust neuroplasticity in auditory networks and enhance the benefits of auditory therapy. OBJECTIVE: The aim of this study was to investigate the ability of VNS paired with tones to restore auditory processing in Mecp2 transgenic rats. METHODS: Seventeen female heterozygous Mecp2 rats and 8 female wild-type (WT) littermates were used in this study. The rats were exposed to multiple tone frequencies paired with VNS 300 times per day for 20 days. Auditory cortex responses were then examined following VNS-tone pairing therapy or no therapy. RESULTS: Our results indicate that Mecp2 mutation alters auditory cortex responses to sounds compared to WT controls. VNS-tone pairing in Mecp2 rats improves the cortical response strength to both tones and speech sounds compared to untreated Mecp2 rats. Additionally, VNS-tone pairing increased the information contained in the neural response that can be used to discriminate between different consonant sounds. CONCLUSION: These results demonstrate that VNS-sound pairing may represent a strategy to enhance auditory function in individuals with Rett syndrome.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Rett Syndrome/physiopathology , Rett Syndrome/therapy , Vagus Nerve Stimulation/methods , Animals , Discrimination, Psychological/physiology , Female , Methyl-CpG-Binding Protein 2/genetics , Neuronal Plasticity/physiology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rett Syndrome/genetics
11.
J Neurophysiol ; 122(2): 659-671, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31215351

ABSTRACT

Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with sounds can enhance the primary auditory cortex (A1) response to the paired sound. The neural response to sounds following VNS-sound pairing in other subcortical and cortical auditory fields has not been documented. We predicted that VNS-tone pairing would increase neural responses to the paired tone frequency across the auditory pathway. In this study, we paired VNS with the presentation of a 9-kHz tone 300 times a day for 20 days. We recorded neural responses to tones from 2,950 sites in the inferior colliculus (IC), A1, anterior auditory field (AAF), and posterior auditory field (PAF) 24 h after the last pairing session in anesthetized rats. We found that VNS-tone pairing increased the percentage of IC, A1, AAF, and PAF that responds to the paired tone frequency. Across all tested auditory fields, the response strength to tones was strengthened in VNS-tone paired rats compared with control rats. VNS-tone pairing reduced spontaneous activity, frequency selectivity, and response threshold across the auditory pathway. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing. Our findings suggest that VNS paired with sound presentation is an effective method to enhance auditory processing.NEW & NOTEWORTHY Previous studies have reported primary auditory cortex plasticity following vagus nerve stimulation (VNS) paired with a sound. This study extends previous findings by documenting that fields across the auditory pathway are altered by VNS-tone pairing. VNS-tone pairing increases the percentage of each field that responds to the paired tone frequency. This is the first study to document both cortical and subcortical plasticity following VNS-sound pairing.


Subject(s)
Auditory Cortex/physiology , Auditory Pathways/physiology , Auditory Perception/physiology , Inferior Colliculi/physiology , Neuronal Plasticity/physiology , Vagus Nerve/physiology , Animals , Electric Stimulation , Electroencephalography , Rats
12.
Methods Protoc ; 2(1)2019 Mar.
Article in English | MEDLINE | ID: mdl-30957053

ABSTRACT

Peripheral nerve stimulation has emerged as a platform therapy to treat a wide range of disorders. Continued development and translation of these strategies requires that researchers have access to reliable, customizable electrodes for nerve stimulation. Here, we detail procedures to build three different configurations of cuff electrodes with varying numbers and orientations of contacts for nerve stimulation in rats. These designs are built with simple, widely available materials, using platinum-iridium electrodes assembled into polyurethane tubing. Moreover, the designs can easily be customized to increase versatility and individualize for specific stimulation applications. This protocol provides a resource to facilitate the construction and customization of stimulation cuffs to support preclinical nerve stimulation research.

13.
Neuroscience ; 406: 290-299, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30904665

ABSTRACT

Repeatedly pairing a brief train of vagus nerve stimulation (VNS) with an auditory stimulus drives reorganization of primary auditory cortex (A1), and the magnitude of this VNS-dependent plasticity is dependent on the stimulation parameters, including intensity and pulse rate. However, there is currently little data to guide the selection of VNS train durations, an easily adjusted parameter that could influence the effect of VNS-based therapies. Here, we tested the effect of varying the duration of the VNS train on the extent of VNS-dependent cortical plasticity. Rats were exposed to a 9 kHz tone 300 times per day for 20 days. Coincident with tone presentation, groups received trains of 4, 16, or 64 pulses of VNS delivered at 30 Hz, corresponding to train durations of 0.125 s, 0.5 s, and 2.0 s, respectively. High-density microelectrode mapping of A1 revealed that 0.5 s duration VNS trains significantly increased the number of neurons in A1 that responded to tones near the paired tone frequency. Trains lasting 0.125 or 2.0 s failed to alter A1 responses, indicating that both shorter and longer stimulation durations are less effective at enhancing plasticity. A second set of experiments evaluating the effect of delivering 4 or 64 pulses in a fixed 0.5 s VNS train duration paired with tone presentation reveal that both slower and faster stimulation rates are less effective at enhancing plasticity. We incorporated these results with previous findings describing the effect of stimulation parameters on VNS-dependent plasticity and activation of neuromodulatory networks to generate a model of synaptic activation by VNS.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity/physiology , Vagus Nerve Stimulation/methods , Animals , Female , Rats , Rats, Sprague-Dawley , Time Factors
14.
Neuroscience ; 369: 76-86, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29129793

ABSTRACT

Repeatedly pairing vagus nerve stimulation (VNS) with a tone or movement drives highly specific and long-lasting plasticity in auditory or motor cortex, respectively. Based on this robust enhancement of plasticity, VNS paired with rehabilitative training has emerged as a potential therapy to improve recovery, even when delivered long after the neurological insult. Development of VNS delivery paradigms that reduce therapy duration and maximize efficacy would facilitate clinical translation. The goal of the current study was to determine whether primary auditory cortex (A1) plasticity can be generated more quickly by shortening the interval between VNS-tone pairing events or by delivering fewer VNS-tone pairing events. While shortening the inter-stimulus interval between VNS-tone pairing events resulted in significant A1 plasticity, reducing the number of VNS-tone pairing events failed to alter A1 responses. Additionally, shortening the inter-stimulus interval between VNS-tone pairing events failed to normalize neural and behavioral responses following acoustic trauma. Extending the interval between VNS-tone pairing events yielded comparable A1 frequency map plasticity to the standard protocol, but did so without increasing neural excitability. These results indicate that the duration of the VNS-event pairing session is an important parameter that can be adjusted to optimize neural plasticity for different clinical needs.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Neuronal Plasticity , Vagus Nerve Stimulation/methods , Action Potentials , Animals , Female , Random Allocation , Rats, Sprague-Dawley , Time Factors
15.
Autism Res ; 11(1): 59-68, 2018 01.
Article in English | MEDLINE | ID: mdl-29052348

ABSTRACT

Individuals with SHANK3 mutations have severely impaired receptive and expressive language abilities. While brain responses are known to be abnormal in these individuals, the auditory cortex response to sound has remained largely understudied. In this study, we document the auditory cortex response to speech and non-speech sounds in the novel Shank3-deficient rat model. We predicted that the auditory cortex response to sounds would be impaired in Shank3-deficient rats. We found that auditory cortex responses were weaker in Shank3 heterozygous rats compared to wild-type rats. Additionally, Shank3 heterozygous responses had less spontaneous auditory cortex firing and were unable to respond well to rapid trains of noise bursts. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome. Autism Res 2018, 11: 59-68. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Individuals with SHANK3 mutations have severely impaired language abilities, yet the auditory cortex response to sound has remained largely understudied. In this study, we found that auditory cortex responses were weaker and were unable to respond well to rapid sounds in Shank3-deficient rats compared to control rats. The rat model of the auditory impairments in SHANK3 mutation could be used to test potential rehabilitation or drug therapies to improve the communication impairments observed in individuals with Phelan-McDermid syndrome.


Subject(s)
Acoustic Stimulation , Auditory Cortex/physiopathology , Auditory Perception/physiology , Nerve Tissue Proteins/deficiency , Animals , Disease Models, Animal , Female , Humans , Male , Rats
16.
J Neurodev Disord ; 9: 20, 2017.
Article in English | MEDLINE | ID: mdl-28690686

ABSTRACT

BACKGROUND: Many children with autism and other neurodevelopmental disorders undergo expensive, time-consuming behavioral interventions that often yield only modest improvements. The development of adjunctive interventions that can increase the benefit of rehabilitation therapies is essential in order to improve the lives of individuals with neurodevelopmental disorders. MAIN TEXT: Vagus nerve stimulation (VNS) is an FDA approved therapy that is safe and effective in reducing seizure frequency and duration in individuals with epilepsy. Individuals with neurodevelopmental disorders often exhibit decreased vagal tone, and studies indicate that VNS can be used to overcome an insufficient vagal response. Multiple studies have also documented significant improvements in quality of life after VNS therapy in individuals with neurodevelopmental disorders. Moreover, recent findings indicate that VNS significantly enhances the benefits of rehabilitative training in animal models and patients, leading to greater recovery in a variety of neurological diseases. Here, we review these findings and provide a discussion of how VNS paired with rehabilitation may yield benefits in the context of neurodevelopmental disorders. CONCLUSIONS: VNS paired with behavioral therapy may represent a potential new approach to enhance rehabilitation that could significantly improve the outcomes of individuals with neurodevelopmental disorders.

17.
Brain Stimul ; 10(3): 543-552, 2017.
Article in English | MEDLINE | ID: mdl-28131520

ABSTRACT

BACKGROUND: Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. OBJECTIVE/HYPOTHESIS: We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. METHODS: VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. RESULTS: Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. CONCLUSION: This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Neuronal Plasticity , Acoustic Stimulation , Animals , Discrimination, Psychological , Male , Phonetics , Rats , Rats, Sprague-Dawley , Vagus Nerve Stimulation
18.
Neurobiol Dis ; 83: 26-34, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26321676

ABSTRACT

Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial.


Subject(s)
Auditory Cortex/physiopathology , Auditory Perception/physiology , Neurons/physiology , Phonetics , Rett Syndrome/physiopathology , Acoustic Stimulation , Animals , Discrimination, Psychological/physiology , Disease Models, Animal , Evoked Potentials, Auditory , Female , Gene Knockout Techniques , Methyl-CpG-Binding Protein 2/genetics , Noise , Rats , Rats, Sprague-Dawley , Rett Syndrome/genetics
19.
Behav Brain Res ; 287: 256-64, 2015.
Article in English | MEDLINE | ID: mdl-25827927

ABSTRACT

Speech sounds evoke unique neural activity patterns in primary auditory cortex (A1). Extensive speech sound discrimination training alters A1 responses. While the neighboring auditory cortical fields each contain information about speech sound identity, each field processes speech sounds differently. We hypothesized that while all fields would exhibit training-induced plasticity following speech training, there would be unique differences in how each field changes. In this study, rats were trained to discriminate speech sounds by consonant or vowel in quiet and in varying levels of background speech-shaped noise. Local field potential and multiunit responses were recorded from four auditory cortex fields in rats that had received 10 weeks of speech discrimination training. Our results reveal that training alters speech evoked responses in each of the auditory fields tested. The neural response to consonants was significantly stronger in anterior auditory field (AAF) and A1 following speech training. The neural response to vowels following speech training was significantly weaker in ventral auditory field (VAF) and posterior auditory field (PAF). This differential plasticity of consonant and vowel sound responses may result from the greater paired pulse depression, expanded low frequency tuning, reduced frequency selectivity, and lower tone thresholds, which occurred across the four auditory fields. These findings suggest that alterations in the distributed processing of behaviorally relevant sounds may contribute to robust speech discrimination.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity , Speech Perception/physiology , Acoustic Stimulation , Animals , Discrimination, Psychological , Evoked Potentials, Auditory , Phonetics , Rats
20.
Brain Stimul ; 8(3): 637-44, 2015.
Article in English | MEDLINE | ID: mdl-25732785

ABSTRACT

BACKGROUND: Individuals with communication disorders, such as aphasia, exhibit weak auditory cortex responses to speech sounds and language impairments. Previous studies have demonstrated that pairing vagus nerve stimulation (VNS) with tones or tone trains can enhance both the spectral and temporal processing of sounds in auditory cortex, and can be used to reverse pathological primary auditory cortex (A1) plasticity in a rodent model of chronic tinnitus. OBJECTIVE/HYPOTHESIS: We predicted that pairing VNS with speech sounds would strengthen the A1 response to the paired speech sounds. METHODS: The speech sounds 'rad' and 'lad' were paired with VNS three hundred times per day for twenty days. A1 responses to both paired and novel speech sounds were recorded 24 h after the last VNS pairing session in anesthetized rats. Response strength, latency and neurometric decoding were compared between VNS speech paired and control rats. RESULTS: Our results show that VNS paired with speech sounds strengthened the auditory cortex response to the paired sounds, but did not strengthen the amplitude of the response to novel speech sounds. Responses to the paired sounds were faster and less variable in VNS speech paired rats compared to control rats. Neural plasticity that was specific to the frequency, intensity, and temporal characteristics of the paired speech sounds resulted in enhanced neural detection. CONCLUSION: VNS speech sound pairing provides a novel method to enhance speech sound processing in the central auditory system. Delivery of VNS during speech therapy could improve outcomes in individuals with receptive language deficits.


Subject(s)
Auditory Cortex/physiology , Neuronal Plasticity/physiology , Phonetics , Vagus Nerve Stimulation , Acoustic Stimulation , Animals , Female , Hearing Disorders/therapy , Humans , Rats , Rats, Sprague-Dawley , Speech Disorders/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...