Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
2.
Sci Rep ; 14(1): 2153, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272949

ABSTRACT

Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation, a hallmark of neurodegenerative disorders. Inducible microglia-like cells have been developed as an in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there has been no systematic assessment of similarity of these cells to primary human microglia along with their responsiveness to external cues expected of primary cells in the brain. In this study, we performed transcriptional characterization of commercially available human inducible pluripotent stem cell (iPSC)-derived microglia-like (iMGL) cells by bulk and single cell RNA sequencing to assess their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia and express many key microglial transcription factors and functional and disease-associated genes. Notably, at the single-cell level, iMGL cells exhibit distinct transcriptional subpopulations, representing both homeostatic and activated states present in normal and diseased primary microglia. Treatment of iMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in responses between cell subpopulations in homeostatic and activated states and deconvolute bulk expression changes into their corresponding single cell states. In summary, our results demonstrate that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of in vivo microglia, and thus represent a promising model system for therapeutic development in neurodegeneration.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Pluripotent Stem Cells , Humans , Microglia/metabolism , Transcription Factors/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism
3.
Epilepsia ; 64(8): 2126-2136, 2023 08.
Article in English | MEDLINE | ID: mdl-37177976

ABSTRACT

OBJECTIVE: Gain of function variants in the sodium-activated potassium channel KCNT1 have been associated with pediatric epilepsy disorders. Here, we systematically examine a spectrum of KCNT1 variants and establish their impact on channel function in multiple cellular systems. METHODS: KCNT1 variants identified from published reports and genetic screening of pediatric epilepsy patients were expressed in Xenopus oocytes and HEK cell lines. Variant impact on current magnitude, current-voltage relationships, and sodium ion modulation were examined. RESULTS: We determined basic properties of KCNT1 in Xenopus oocyte and HEK systems, including the role of extra- and intracellular sodium in regulating KCNT1 activity. The most common six KCNT1 variants demonstrated strong gain of function (GOF) effects on one or more channel properties. Analysis of 36 total variants identified phenotypic heterogeneity but a strong tendency for pathogenic variants to exert GOF effects on channel properties. By controlling intracellular sodium, we demonstrate that multiple pathogenic KCNT1 variants modulate channel voltage dependence by altering the sensitivity to sodium ions. SIGNIFICANCE: This study represents the largest systematic functional examination of KCNT1 variants to date. We both confirm previously reported GOF channel phenotypes and expand the number of variants with in vitro GOF effects. Our data provide further evidence that novel KCNT1 variants identified in epilepsy patients lead to disease through generalizable GOF mechanisms including increases in current magnitude and/or current-voltage relationships.


Subject(s)
Epilepsy , Gain of Function Mutation , Humans , Potassium Channels, Sodium-Activated/genetics , Mutation , Epilepsy/genetics , Potassium Channels/genetics , Potassium Channels/metabolism , Nerve Tissue Proteins/genetics
4.
Sci Rep ; 13(1): 3000, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810619

ABSTRACT

SAM domain-containing protein 1 (SAMD1) has been implicated in atherosclerosis, as well as in chromatin and transcriptional regulation, suggesting a versatile and complex biological function. However, its role at an organismal level is currently unknown. Here, we generated SAMD1-/- and SAMD1+/- mice to explore the role of SAMD1 during mouse embryogenesis. Homozygous loss of SAMD1 was embryonic lethal, with no living animals seen after embryonic day 18.5. At embryonic day 14.5, organs were degrading and/or incompletely developed, and no functional blood vessels were observed, suggesting failed blood vessel maturation. Sparse red blood cells were scattered and pooled, primarily near the embryo surface. Some embryos had malformed heads and brains at embryonic day 15.5. In vitro, SAMD1 absence impaired neuronal differentiation processes. Heterozygous SAMD1 knockout mice underwent normal embryogenesis and were born alive. Postnatal genotyping showed a reduced ability of these mice to thrive, possibly due to altered steroidogenesis. In summary, the characterization of SAMD1 knockout mice suggests a critical role of SAMD1 during developmental processes in multiple organs and tissues.


Subject(s)
Embryo, Mammalian , Embryonic Development , Mice , Animals , Embryo, Mammalian/metabolism , Mice, Knockout , Heterozygote , Homozygote
5.
Sci Rep ; 12(1): 17394, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36253414

ABSTRACT

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


Subject(s)
Induced Pluripotent Stem Cells , Reproducibility of Results , Sequence Analysis, RNA , Transcriptome
6.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Article in English | MEDLINE | ID: mdl-36177947

ABSTRACT

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Subject(s)
Engineering , Organoids , Humans , Tissue Engineering
7.
Cell Stem Cell ; 28(9): 1507-1515, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34478628

ABSTRACT

Over the course of the last decade, the biopharmaceutical industry has slowly adopted human inducible pluripotent stem cell (hiPSC) technology to enable the development of humanized model systems to test new therapeutic molecules and drug modalities. The adoption of hiPSC-based models by the industry has increased appreciably in the past 3-5 years. This increase has paralleled the explosion in availability of high-quality human genetic data to mine for new drug targets and the emergence of human-specific therapeutic modalities.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Drug Discovery , Humans , Models, Biological , Myocytes, Cardiac
8.
Neuron ; 100(4): 783-797, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30465765

ABSTRACT

From the beginning, induced pluripotent stem cell (iPSC) technology was touted as a path to improve our understanding of disease biology and enable drug discovery. Advances in iPSC culture, genome engineering, and differentiation protocols have rapidly expanded the use of iPSC-derived disease models from the specialized work of stem cell biology into the mainstream toolkit of cellular neuroscience. Here we provide guidance for using iPSC-derived neurons for disease modeling with a focus on enabling screening platforms amenable to therapeutic drug discovery. We also highlight the potential for incorporating three-dimensional systems that may create more translational in vitro models.


Subject(s)
Drug Discovery/methods , Induced Pluripotent Stem Cells/physiology , Neurodegenerative Diseases/pathology , Neurons/physiology , Translational Research, Biomedical/methods , Animals , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Coculture Techniques , Drug Discovery/trends , Humans , Induced Pluripotent Stem Cells/drug effects , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurons/drug effects , Translational Research, Biomedical/trends
9.
Drug Metab Dispos ; 46(11): 1703-1711, 2018 11.
Article in English | MEDLINE | ID: mdl-30171163

ABSTRACT

Current in vitro models for identifying nephrotoxins are poorly predictive. We differentiated human pluripotent stem cells (hPSCs) into three-dimensional, multicellular structures containing proximal tubule cells (PTCs) and podocytes and evaluated them as a platform for predicting nephrotoxicity. The PTCs showed megalin-dependent, cubilin-mediated endocytosis of fluorescently labeled dextran and active gamma-glutamyl transpeptidase enzymes. Transporters from both the ATP-binding cassette (ABC) and the solute carrier (SLC) families were present at physiological levels in the differentiated cells, but important renal transporters such as organic anion transporter 1 (OAT1), OAT3, and organic cation transporter 2 (OCT2) were present only at lower levels. Radioactive uptake studies confirmed the functional activity of organic cation transporter, novel, type 2 (OCTN2), organic anion transporter polypeptide 4C1 (OATP4C1), and OCTs/multidrug and toxin extrusion proteins (MATEs). When treated with 10 pharmacologic agents as a test of the platform, the known nephrotoxic compounds were distinguished from the more benign compounds by an increase in tubular (PTC, kidney injury molecule 1 (KIM-1), and heme oxygenase 1 (HO-1)) and glomerular (nephrin [NPHS1]/Wilms tumor protein [WT1]) markers associated with nephrotoxicity, and we were able to distinguish the type of nephrotoxin by examining the relative levels of these markers. Given the functions demonstrated and with improved expression of key renal transporters, this hPSC-derived in vitro kidney model shows promise as a platform for detection of mechanistically different nephrotoxins.


Subject(s)
Kidney Diseases/metabolism , Kidney Glomerulus/metabolism , Kidney Tubules, Proximal/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cells, Cultured , Humans , Mice , Organic Cation Transport Proteins/metabolism
10.
Eur J Neurosci ; 43(7): 979-89, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26833794

ABSTRACT

A common strategy when searching for cognitive-enhancing drugs has been to target the N-methyl-d-aspartate receptor (NMDAR), given its putative role in synaptic plasticity and learning. Evidence in favour of this approach has come primarily from studies with rodents using behavioural assays like the Morris water maze. D-amino acid oxidase (DAO) degrades neutral D-amino acids such as D-serine, the primary endogenous co-agonist acting at the glycine site of the synaptic NMDAR. Inhibiting DAO could therefore provide an effective and viable means of enhancing cognition, particularly in disorders like schizophrenia, in which NMDAR hypofunction is implicated. Indirect support for this notion comes from the enhanced hippocampal long-term potentiation and facilitated water maze acquisition of ddY/Dao(-) mice, which lack DAO activity due to a point mutation in the gene. Here, in Dao knockout (Dao(-/-) ) mice, we report both better and worse water maze performance, depending on the radial distance of the hidden platform from the side wall of the pool. Dao(-/-) mice displayed an increased innate preference for swimming in the periphery of the maze (possibly due to heightened anxiety), which facilitated the discovery of a peripherally located platform, but delayed the discovery of a centrally located platform. By contrast, Dao(-/-) mice exhibited normal performance in two alternative assays of long-term spatial memory: the appetitive and aversive Y-maze reference memory tasks. Taken together, these results question the proposed relationship between DAO inactivation and enhanced long-term associative spatial memory. They also have generic implications for how Morris water maze studies are performed and interpreted.


Subject(s)
Cognition , D-Amino-Acid Oxidase/genetics , Maze Learning , Animals , D-Amino-Acid Oxidase/metabolism , Female , Male , Memory, Long-Term , Mice , Spatial Memory
11.
Sci Rep ; 5: 16821, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26581770

ABSTRACT

Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrations yielded a high population of neural crest progenitor cells (AP2α(+), P75(+)), which further differentiated into nociceptive neurons (TRKA(+), Nav1.7(+), P2X3(+)). The overexpression of Neurogenin 1 (Neurog1) promoted the neurons to express genes related to sensory neurons (Peripherin, TrkA) and to further mature into TRPV1(+) nociceptive neurons. Importantly, the overexpression of Neurog1 increased the response of these neurons to capsaicin stimulation, a hallmark of mature functional nociceptive neurons. Taken together, this study reveals the important role that Neurog1 plays in generating functional human nociceptive neurons.


Subject(s)
Cell Differentiation , Human Embryonic Stem Cells/cytology , Neurons/cytology , Nociception , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 4/pharmacology , Cell Differentiation/drug effects , Cell Line , Cell Lineage/drug effects , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Mice , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurons/drug effects , Nociception/drug effects , Sensory Receptor Cells/cytology , Sodium Channels/metabolism , Tretinoin/pharmacology
12.
Eur J Neurosci ; 41(9): 1167-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25816902

ABSTRACT

d-amino acid oxidase (DAO, DAAO) is an enzyme that degrades d-serine, the primary endogenous co-agonist of the synaptic N-methyl-d-aspartate receptor. Convergent evidence implicates DAO in the pathophysiology and potential treatment of schizophrenia. To better understand the functional role of DAO, we characterized the behaviour of the first genetically engineered Dao knockout (Dao(-/-) ) mouse. Our primary objective was to assess both spatial and non-spatial short-term memory performance. Relative to wildtype (Dao(+/+) ) littermate controls, Dao(-/-) mice demonstrated enhanced spatial recognition memory performance, improved odour recognition memory performance, and enhanced spontaneous alternation in the T-maze. In addition, Dao(-/-) mice displayed increased anxiety-like behaviour in five tests of approach/avoidance conflict: the open field test, elevated plus maze, successive alleys, light/dark box and novelty-suppressed feeding. Despite evidence of a reciprocal relationship between anxiety and sleep and circadian function in rodents, we found no evidence of sleep or circadian rhythm disruption in Dao(-/-) mice. Overall, our observations are consistent with, and extend, findings in the natural mutant ddY/Dao(-) line. These data add to a growing body of preclinical evidence linking the inhibition, inactivation or deletion of DAO with enhanced cognitive performance. Our results have implications for the development of DAO inhibitors as therapeutic agents.


Subject(s)
Anxiety/metabolism , Circadian Rhythm , D-Amino-Acid Oxidase/metabolism , Memory, Short-Term , Sleep , Animals , Anxiety/physiopathology , Avoidance Learning , D-Amino-Acid Oxidase/genetics , Female , Gene Deletion , Male , Maze Learning , Mice
13.
Eur J Neurosci ; 40(7): 2999-3009, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25040393

ABSTRACT

d-Amino acid oxidase (DAO) degrades the N-methyl-d-aspartate (NMDA) receptor co-agonist d-serine, and is implicated in schizophrenia as a risk gene and therapeutic target. In schizophrenia, the critical neurochemical abnormality affects dopamine, but to date there is little evidence that DAO impacts on the dopamine system. To address this issue, we measured the electrophysiological properties of dopaminergic (DA) and non-DA neurons in the ventral tegmental area (VTA) of anaesthetised DAO knockout (DAO(-/-) ) and DAO heterozygote (DAO(+/-) ) mice as compared with their wild-type (DAO(+/+) ) littermates. Genotype was confirmed at the protein level by western blotting and immunohistochemistry. One hundred and thirty-nine VTA neurons were recorded in total, and juxtacellular labelling of a subset revealed that neurons immunopositive for tyrosine hydroxylase had DA-like electrophysiological properties that were distinct from those of neurons that were tyrosine hydroxylase-immunonegative. In DAO(-/-) mice, approximately twice as many DA-like neurons fired in a bursting pattern than in DAO(+/-) or DAO(+/+) mice, but other electrophysiological properties did not differ between genotypes. In contrast, non-DA-like neurons had a lower firing rate in DAO(-/-) mice than in DAO(+/-) or DAO(+/+) mice. These data provide the first direct evidence that DAO modulates VTA DA neuron activity, which is of interest for understanding both the glutamatergic regulation of dopamine function and the therapeutic potential of DAO inhibitors. The increased DA neuron burst-firing probably reflects increased availability of d-serine at VTA NMDA receptors, but the site, mechanism and mediation of the effect requires further investigation, and may include both direct and indirect processes.


Subject(s)
Action Potentials , D-Amino-Acid Oxidase/physiology , Dopaminergic Neurons/physiology , Ventral Tegmental Area/physiology , Animals , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/enzymology , Female , Male , Mice , Mice, Knockout , Neurons/enzymology , Neurons/physiology , Ventral Tegmental Area/cytology , Ventral Tegmental Area/enzymology
14.
J Biol Chem ; 289(8): 4562-70, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24362033

ABSTRACT

A need for better clinical outcomes has heightened interest in the use of physiologically relevant human cells in the drug discovery process. Patient-specific human induced pluripotent stem cells may offer a relevant, robust, scalable, and cost-effective model of human disease physiology. Small molecule high throughput screening in human induced pluripotent stem cell-derived cells with the intent of identifying novel therapeutic compounds is starting to influence the drug discovery process; however, the use of these cells presents many high throughput screening development challenges. This technology has the potential to transform the way drug discovery is performed.


Subject(s)
High-Throughput Screening Assays/methods , Induced Pluripotent Stem Cells/cytology , Small Molecule Libraries/analysis , Humans
15.
Cell Stem Cell ; 12(6): 669-77, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746976

ABSTRACT

Integration of physiologically relevant in vitro assays at the earliest stages of drug discovery may improve the likelihood of successfully translating preclinical discoveries to the clinic. Assays based on in vitro-differentiated, human pluripotent stem cell (IVD hPSC)-derived cells, which may better model human physiology, are starting to impact the drug discovery process, but their implementation has been slower than originally anticipated. In this Perspective, we discuss imperatives for incorporating IVD hPSCs into drug discovery and the associated challenges.


Subject(s)
Drug Discovery/methods , Pluripotent Stem Cells/transplantation , Humans
16.
Toxicol Sci ; 131(1): 292-301, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22982684

ABSTRACT

Cardiotoxicity is one of the leading causes of drug attrition. Current in vitro models insufficiently predict cardiotoxicity, and there is a need for alternative physiologically relevant models. Here we describe the gene expression profile of human-induced pluripotent stem cell-derived cardiocytes (iCC) postthaw over a period of 42 days in culture and compare this profile to human fetal and adult as well as adult cynomolgus nonhuman primate (NHP, Macaca fascicularis) heart tissue. Our results indicate that iCC express relevant cardiac markers such as ion channels (SCN5A, KCNJ2, CACNA1C, KCNQ1, and KCNH2), tissue-specific structural markers (MYH6, MYLPF, MYBPC3, DES, TNNT2, and TNNI3), and transcription factors (NKX2.5, GATA4, and GATA6) and lack the expression of stem cell markers (FOXD3, GBX2, NANOG, POU5F1, SOX2, and ZFP42). Furthermore, we performed a functional evaluation of contractility of the iCC and showed functional and pharmacological correlations with myocytes isolated from adult NHP hearts. These results suggest that stem cell-derived cardiocytes may represent a novel in vitro model to study human cardiac toxicity with potential ex vivo and in vivo translation.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Pluripotent Stem Cells/cytology , Transcriptome/drug effects , Animals , Calcium Signaling/drug effects , Cell Culture Techniques , Cell Differentiation , Drug Evaluation, Preclinical , Gene Expression Profiling , Humans , Macaca fascicularis , Myocytes, Cardiac/metabolism
17.
Drug Metab Dispos ; 40(11): 2067-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22837388

ABSTRACT

D-Amino acid oxidase (DAAO) catalyzes the oxidative deamination of D-amino acids including D-serine, a full agonist at the glycine modulatory site of the N-methyl-d-aspartate (NMDA) receptor. To evaluate the significance of DAAO-mediated metabolism in the pharmacokinetics of oral D-serine, plasma D-serine levels were measured in both wild-type mice and transgenic mice lacking DAAO. Although D-serine levels were rapidly diminished in wild-type mice (t(½) = 1.2 h), sustained drug levels over the course of 4 h (t(½) > 10 h) were observed in mice lacking DAAO. Coadministration of D-serine with 6-chlorobenzo[d]isoxazol-3-ol (CBIO), a small-molecule DAAO inhibitor, in wild-type mice resulted in the enhancement of plasma D-serine levels, although CBIO seems to have only temporary effects on the plasma D-serine levels due to glucuronidation of the key hydroxyl group. These findings highlight the predominant role of DAAO in the clearance of D-serine from the systemic circulation. Thus, a potent DAAO inhibitor with a longer half-life should be capable of maintaining high plasma D-serine levels over a sustained period of time and might have therapeutic implications for the treatment of schizophrenia.


Subject(s)
D-Amino-Acid Oxidase/deficiency , D-Amino-Acid Oxidase/metabolism , Serine/pharmacokinetics , Animals , Brain/metabolism , D-Amino-Acid Oxidase/antagonists & inhibitors , D-Amino-Acid Oxidase/genetics , Female , Half-Life , Humans , Isoxazoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microsomes, Liver/metabolism , Schizophrenia/blood , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/metabolism , Serine/blood , Serine/pharmacology
18.
Methods Mol Biol ; 602: 37-54, 2010.
Article in English | MEDLINE | ID: mdl-20012391

ABSTRACT

Genetically modified mouse models have been proven to be a powerful tool in drug discovery. The ability to genetically modify the mouse genome by removing or replacing a specific gene has enhanced our ability to identify and validate target genes of interest. In addition, many human diseases can be mimicked in the mouse and signaling pathways have been shown to be conserved. In spite of these advantages the technology has limitations. In transgenic animals there may be significant heterogeneity among different founders. In knock-out animals the predicted phenotypes are not always readily observed and occasionally a completely novel and unexpected phenotype emerges. To address the latter and ensure that a deep knowledge of the target of interest is obtained, we have developed a comprehensive phenotyping program which has identified novel phenotypes as well as any potential safety concerns which may be associated with a particular target. Finally we continue to explore innovative technologies as they become available such as RNAi for temporal and spatial gene knock-down and humanized models that may better simulate human disease states.


Subject(s)
Drug Discovery , Drug Industry , Mice, Transgenic , Animals , Disease Models, Animal , Gene Knock-In Techniques , Humans , Mice , Mice, Knockout , Phenotype
19.
Genesis ; 47(6): 423-31, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19415629

ABSTRACT

Transforming growth factor beta1 (TGFbeta1) is a multifunctional growth factor involved in wound healing, tissue fibrosis, and in the pathogenesis of many syndromic diseases (e.g., Marfan syndrome, Camurati-Engelmann disease) and muscular, neurological, ophthalmic, cardiovascular and immunological disorders, and cancer. Since the generation of Tgfb1 knockout mice, there has been extraordinary progress in understanding its physiological and pathophysiological function. Here, we report the generation of a conditional knockout allele for Tgfb1 in which its exon 6 is flanked with LoxP sites. As proof of principle, we crossed these mice to LckCre transgenic mice and specifically disrupted Tgfb1 in T cells. The results indicate that T-cell-produced TGFbeta1 is required for normal in vivo regulation of peripheral T-cell activation, maintenance of T-cell homeostasis, and suppression of autoimmunity.


Subject(s)
Exons/genetics , Gene Targeting/methods , T-Lymphocytes/metabolism , Transforming Growth Factor beta1/genetics , Alleles , Animals , Cell Count , Female , Flow Cytometry , Gene Expression Profiling , Homeostasis/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Mutation , Reverse Transcriptase Polymerase Chain Reaction , Spleen/cytology , Spleen/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/metabolism , Transforming Growth Factor beta1/physiology
20.
J Biol Chem ; 283(46): 31303-14, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18779325

ABSTRACT

To analyze the cardiac functions of AE3, we disrupted its gene (Slc4a3) in mice. Cl(-)/HCO3(-) exchange coupled with Na+-dependent acid extrusion can mediate pH-neutral Na+ uptake, potentially affecting Ca2+ handling via effects on Na+/Ca2+ exchange. AE3 null mice appeared normal, however, and AE3 ablation had no effect on ischemia-reperfusion injury in isolated hearts or cardiac performance in vivo. The NKCC1 Na+-K+-2Cl(-) cotransporter also mediates Na+ uptake, and loss of NKCC1 alone does not impair contractility. To further stress the AE3-deficient myocardium, we combined the AE3 and NKCC1 knock-outs. Double knock-outs had impaired contraction and relaxation both in vivo and in isolated ventricular myocytes. Ca2+ transients revealed an apparent increase in Ca2+ clearance in double null cells. This was unlikely to result from increased Ca2+ sequestration, since the ratio of phosphorylated phospholamban to total phospholamban was sharply reduced in all three mutant hearts. Instead, Na+/Ca2+ exchanger activity was found to be enhanced in double null cells. Systolic Ca2+ was unaltered, however, suggesting more direct effects on the contractile apparatus of double null myocytes. Expression of the catalytic subunit of protein phosphatase 1 was increased in all mutant hearts. There was also a dramatic reversal, between single null and double null hearts, in the carboxymethylation and localization to the myofibrillar fraction, of the catalytic subunit of protein phosphatase 2A, which corresponded to the loss of normal contractility in double null hearts. These data show that AE3 and NKCC1 affect Ca2+ handling, PLN regulation, and expression and localization of major cardiac phosphatases and that their combined loss impairs cardiac function.


Subject(s)
Antiporters/metabolism , Calcium/metabolism , Myocardial Contraction , Phosphoprotein Phosphatases/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Animals , Antiporters/deficiency , Antiporters/genetics , Cardiovascular System/metabolism , Fertility , Mice , Mice, Knockout , Mutation/genetics , Phosphorylation , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Sodium-Potassium-Chloride Symporters/deficiency , Sodium-Potassium-Chloride Symporters/genetics , Solute Carrier Family 12, Member 2 , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL