Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Anaesth ; 92(6): 836-40, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15096446

ABSTRACT

BACKGROUND: Reduction of heat losses from the skin by thermal insulation is used to avoid perioperative hypothermia. However, there is little information about the physical properties of various insulating materials used in the operating room. METHODS: The following insulation materials were tested using a validated manikin: cotton surgical drape tested in two and four layers; Allegiance drape; 3M Steri-Drape; metallized plastic sheet; Thermadrape Barkey thermcare 1 tested in one and two layers; hospital duvet tested in one and two layers. Heat loss from the surface of the manikin can be described as: Q(*);= h.DeltaT.A where Q(*); is heat flux, h is the heat exchange coefficient, DeltaT is the temperature gradient between the environment and surface and A is the area covered. The heat flux per unit area (Q(*); A(-1)) and surface temperature were measured with nine calibrated heat-flux transducers. The environmental temperature was measured using a thermoanemometer. DeltaT was varied and h was determined by linear regression analysis as the slope of DeltaT vs Qdot; A(-1). The reciprocal of h defines the insulation. RESULTS: The insulation value of air was 0.61 Clo. The insulation values of the materials varied between 0.17 Clo (two layers of cotton surgical drapes) to 2.79 Clo (two layers of hospital duvet). CONCLUSIONS: There are relevant differences between various insulating materials. The best commercially available material designed for use in the operating room (Barkey thermcare 1) can reduce heat loss from the covered area by 45% when used in two layers. Given the range of insulating materials available for outdoor activities, significant improvement in insulation of patients in the operating room is both possible and desirable.


Subject(s)
Body Temperature Regulation , Hypothermia/prevention & control , Intraoperative Care/methods , Intraoperative Complications/prevention & control , Air , Bedding and Linens , Humans , Intraoperative Care/instrumentation , Manikins , Materials Testing , Skin Temperature
2.
Acta Anaesthesiol Scand ; 47(1): 58-64, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12492798

ABSTRACT

BACKGROUND: Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. METHODS: Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. RESULTS: Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the lowest heat transfer was delivered by the Warm-Gard system with the single use blanket (8-13.4 W). The heat exchange coefficient varied between 12.5 W m-2 degrees C-1 and 30.8 W m-2 degrees C-1, mean DeltaT varied between 1.04 degrees C and 2.48 degrees C for surface temperatures of 36 degrees C and between 0.50 degrees C and 1.63 degrees C for surface temperatures of 38 degrees C. CONCLUSION: No relevant differences in heat transfer of lower body blankets were found between the different forced-air warming systems tested. Heat transfer was lower than heat transfer by upper body blankets tested in a previous study. However, forced-air warming systems with lower body blankets are still more effective than forced-air warming systems with upper body blankets in the prevention of perioperative hypothermia, because they cover a larger area of the body surface.


Subject(s)
Manikins , Rewarming/instrumentation , Air Movements , Algorithms , Convection , Copper , Data Interpretation, Statistical , Hot Temperature , Humans , Temperature
3.
Acta Anaesthesiol Scand ; 46(8): 965-72, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12190797

ABSTRACT

BACKGROUND: Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. METHODS: Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. RESULTS: Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. CONCLUSION: We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.


Subject(s)
Hot Temperature/therapeutic use , Hypothermia/prevention & control , Intraoperative Complications/prevention & control , Bedding and Linens , Humans , Manikins , Thermodynamics
4.
Acta Anaesthesiol Scand ; 46(1): 43-50, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11903071

ABSTRACT

BACKGROUND: During surgery hypothermia can be avoided only if the heat exchange between the body surface and the environment can be controlled. To allow a systematic analysis of this heat exchange, we constructed and evaluated a copper manikin of the human body. METHODS: The manikin consists of six tubes (head, trunk, two arms and two legs) painted matt-black to simulate the emissivity of the human skin. Hot-water mattresses are bonded to the inner surface of the copper tubes to set the surface temperature. Calibrated heat flux transducers were placed on the following points to determine the heat exchange coefficient for radiation and convection (hRC) of the manikin: Forehead, chest, abdomen, upper arm, forearm, dorsal hand, anterior thigh, anterior leg and foot. Room temperature was set to 22 degrees C. Surface temperature of the manikin was set between 22 degrees C and 38 degrees C. The hRC was determined by linear regression analysis as the slope of the temperature gradient between the manikin and the room versus the measured heat flux. Subsequently we studied five minimally clothed volunteers in a climate chamber. Initial chamber temperature was set to 29 degrees C and was lowered slowly to 12 degrees C. The hRC was determined as described above for each volunteer. RESULTS: The hRC of the manikin was 11.0 W m(-2) degrees C(-1) and hRC of the volunteers was 10.8 W m(-2) degrees C(-1). CONCLUSION: The excellent correlation of hRC between the volunteers and the manikin will allow the manikin to be used for standardised studies of perioperative heat exchange.


Subject(s)
Body Temperature Regulation , Manikins , Surgical Procedures, Operative , Adult , Air Movements , Arm/blood supply , Humans , Humidity , Intraoperative Period , Male , Middle Aged , Skin Temperature , Temperature , Vasoconstriction
SELECTION OF CITATIONS
SEARCH DETAIL