Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Article in English | MEDLINE | ID: mdl-38539014

ABSTRACT

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Subject(s)
Aging , Alzheimer Disease , Disease Models, Animal , Energy Metabolism , Microglia , Triggering Receptor Expressed on Myeloid Cells-1 , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Aging/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/genetics , Mice , Energy Metabolism/physiology , Microglia/metabolism , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Cognition/physiology , Humans , Male , Hippocampus/metabolism , Hippocampus/pathology , Mice, Inbred C57BL
2.
Alzheimers Dement ; 19(11): 4908-4921, 2023 11.
Article in English | MEDLINE | ID: mdl-37061460

ABSTRACT

INTRODUCTION: Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis. METHODS: We generated and investigated 5xFAD Inpp5dfl/fl Cx3cr1Ert2Cre mice to ascertain the function of microglial SHIP-1 signaling in response to amyloid beta (Aß)-mediated pathology. RESULTS: SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aß plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aß engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls. DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aß-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease. HIGHLIGHTS: Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Microglia/metabolism , Mice, Transgenic , Neurodegenerative Diseases/pathology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Risk Factors , Plaque, Amyloid/pathology , Disease Models, Animal
3.
Elife ; 122023 01 03.
Article in English | MEDLINE | ID: mdl-36594818

ABSTRACT

Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Mice , Animals , Brain Injuries, Traumatic/metabolism , Brain Concussion/metabolism , Brain Concussion/pathology , Brain Injuries/metabolism , Aging/genetics , Aging/metabolism , Meninges/pathology , Mice, Inbred C57BL , Microglia/metabolism , Brain/metabolism , Disease Models, Animal
4.
Nat Commun ; 11(1): 4524, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32913280

ABSTRACT

Traumatic brain injury (TBI) is a leading global cause of death and disability. Here we demonstrate in an experimental mouse model of TBI that mild forms of brain trauma cause severe deficits in meningeal lymphatic drainage that begin within hours and last out to at least one month post-injury. To investigate a mechanism underlying impaired lymphatic function in TBI, we examined how increased intracranial pressure (ICP) influences the meningeal lymphatics. We demonstrate that increased ICP can contribute to meningeal lymphatic dysfunction. Moreover, we show that pre-existing lymphatic dysfunction before TBI leads to increased neuroinflammation and negative cognitive outcomes. Finally, we report that rejuvenation of meningeal lymphatic drainage function in aged mice can ameliorate TBI-induced gliosis. These findings provide insights into both the causes and consequences of meningeal lymphatic dysfunction in TBI and suggest that therapeutics targeting the meningeal lymphatic system may offer strategies to treat TBI.


Subject(s)
Brain Injuries/physiopathology , Gliosis/physiopathology , Glymphatic System/physiology , Meninges/physiopathology , Animals , Brain Injuries/complications , Brain Injuries/pathology , Brain Injuries/therapy , Dependovirus/genetics , Disease Models, Animal , Female , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Gliosis/etiology , Gliosis/pathology , Gliosis/prevention & control , Glymphatic System/pathology , Humans , Male , Meninges/pathology , Mice , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/therapeutic use
5.
Immunol Rev ; 297(1): 225-246, 2020 09.
Article in English | MEDLINE | ID: mdl-32588460

ABSTRACT

The amyloid hypothesis has dominated Alzheimer's disease (AD) research for almost 30 years. This hypothesis hinges on the predominant clinical role of the amyloid beta (Aß) peptide in propagating neurofibrillary tangles (NFTs) and eventual cognitive impairment in AD. Recent research in the AD field has identified the brain-resident macrophages, known as microglia, and their receptors as integral regulators of both the initiation and propagation of inflammation, Aß accumulation, neuronal loss, and memory decline in AD. Emerging studies have also begun to reveal critical roles for distinct innate immune pathways in AD pathogenesis, which has led to great interest in harnessing the innate immune response as a therapeutic strategy to treat AD. In this review, we will highlight recent advancements in our understanding of innate immunity and inflammation in AD onset and progression. Additionally, there has been mounting evidence suggesting pivotal contributions of environmental factors and lifestyle choices in AD pathogenesis. Therefore, we will also discuss recent findings, suggesting that many of these AD risk factors influence AD progression via modulation of microglia and immune responses.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Immunity, Innate , Microglia/metabolism
6.
Nature ; 580(7805): 647-652, 2020 04.
Article in English | MEDLINE | ID: mdl-32350463

ABSTRACT

Neurodevelopment is characterized by rapid rates of neural cell proliferation and differentiation followed by massive cell death in which more than half of all recently generated brain cells are pruned back. Large amounts of DNA damage, cellular debris, and by-products of cellular stress are generated during these neurodevelopmental events, all of which can potentially activate immune signalling. How the immune response to this collateral damage influences brain maturation and function remains unknown. Here we show that the AIM2 inflammasome contributes to normal brain development and that disruption of this immune sensor of genotoxic stress leads to behavioural abnormalities. During infection, activation of the AIM2 inflammasome in response to double-stranded DNA damage triggers the production of cytokines as well as a gasdermin-D-mediated form of cell death known as pyroptosis1-4. We observe pronounced AIM2 inflammasome activation in neurodevelopment and find that defects in this sensor of DNA damage result in anxiety-related behaviours in mice. Furthermore, we show that the AIM2 inflammasome contributes to central nervous system (CNS) homeostasis specifically through its regulation of gasdermin-D, and not via its involvement in the production of the cytokines IL-1 and/or IL-18. Consistent with a role for this sensor of genomic stress in the purging of genetically compromised CNS cells, we find that defective AIM2 inflammasome signalling results in decreased neural cell death both in response to DNA damage-inducing agents and during neurodevelopment. Moreover, mutations in AIM2 lead to excessive accumulation of DNA damage in neurons as well as an increase in the number of neurons that incorporate into the adult brain. Our findings identify the inflammasome as a crucial player in establishing a properly formed CNS through its role in the removal of genetically compromised cells.


Subject(s)
Brain/growth & development , DNA Damage , DNA-Binding Proteins/metabolism , Inflammasomes/metabolism , Animals , Animals, Newborn , Anxiety/pathology , Anxiety/physiopathology , Anxiety/psychology , Behavior, Animal/physiology , Brain/cytology , Brain/metabolism , Brain/pathology , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/deficiency , Caspase 1/metabolism , Cell Death , DNA-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Maze Learning/physiology , Mice , Mutation , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Phosphate-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...