Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomater Sci ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39268757

ABSTRACT

Confocal reflectance imaging typically suffers from high background and poor sensitivity. We demonstrate sensitive and low-background reflectance imaging of cells encapsulated in transparent 3D hydrogels. Nanoscale cell morphology is visualized with sensitivity similar to confocal fluorescence, with low laser power, minimal specimen preparation, and reduced toxicity.

2.
Nat Cell Biol ; 26(9): 1520-1534, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39160291

ABSTRACT

Cells migrating through complex three-dimensional environments experience considerable physical challenges, including tensile stress and compression. To move, cells need to resist these forces while also squeezing the large nucleus through confined spaces. This requires highly coordinated cortical contractility. Microtubules can both resist compressive forces and sequester key actomyosin regulators to ensure appropriate activation of contractile forces. Yet, how these two roles are integrated to achieve nuclear transmigration in three dimensions is largely unknown. Here, we demonstrate that compression triggers reinforcement of a dedicated microtubule structure at the rear of the nucleus by the mechanoresponsive recruitment of cytoplasmic linker-associated proteins, which dynamically strengthens and repairs the lattice. These reinforced microtubules form the mechanostat: an adaptive feedback mechanism that allows the cell to both withstand compressive force and spatiotemporally organize contractility signalling pathways. The microtubule mechanostat facilitates nuclear positioning and coordinates force production to enable the cell to pass through constrictions. Disruption of the mechanostat imbalances cortical contractility, stalling migration and ultimately resulting in catastrophic cell rupture. Our findings reveal a role for microtubules as cellular sensors that detect and respond to compressive forces, enabling movement and ensuring survival in mechanically demanding environments.


Subject(s)
Cell Movement , Cell Nucleus , Microtubules , Microtubules/metabolism , Animals , Cell Nucleus/metabolism , Stress, Mechanical , Mechanotransduction, Cellular , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mice , Humans , Actomyosin/metabolism , Microfilament Proteins
3.
APL Bioeng ; 8(1): 016108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38352162

ABSTRACT

Cerebral cavernous malformations (CCMs) are vascular lesions that predominantly form in blood vessels of the central nervous system upon loss of the CCM multimeric protein complex. The endothelial cells within CCM lesions are characterized by overactive MEKK3 kinase and KLF2/4 transcription factor signaling, leading to pathological changes such as increased endothelial cell spreading and reduced junctional integrity. Concomitant to aberrant endothelial cell signaling, non-autonomous signals from the extracellular matrix (ECM) have also been implicated in CCM lesion growth and these factors might explain why CCM lesions mainly develop in the central nervous system. Here, we adapted a three-dimensional microfluidic system to examine CCM1 deficient human micro-vessels in distinctive extracellular matrices. We validate that pathological hallmarks are maintained in this model. We further show that key genes responsible for homeostasis of hyaluronic acid, a major extracellular matrix component of the central nervous system, are dysregulated in CCM. Supplementing the matrix in our model with distinct forms of hyaluronic acid inhibits pathological cell spreading and rescues barrier function. Hyaluronic acid acts by dampening cell-matrix adhesion signaling in CCM, either downstream or in parallel of KLF2/4. This study provides a proof-of-principle that ECM embedded 3D microfluidic models are ideally suited to identify how changes in ECM structure and signaling impact vascular malformations.

SELECTION OF CITATIONS
SEARCH DETAIL