Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(27): e202303503, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37041117

ABSTRACT

We report a general synthetic strategy for post-encapsulation of metal nanoparticles within preformed zeolites using post-synthetic modification. Both anionic and cationic precursors to metal nanoparticle are supported on 8- and 10-membered ring zeolites and analogues during wet impregnation using 2-aminoethanethiol (AET) as a bi-grafting agent. Thiol groups are coordinated to metal centers, whereas amine moieties are dynamically attached to micropore walls via acid-base interactions. The dynamic acid-base interactions cause the even distribution of the metal-AET complex throughout the zeolite matrix. These processes encapsulate Au, Rh, and Ni precursors within the CHA, *MRE, MFI zeolite, and SAPO-34 zeolite analogues, for which small channel apertures preclude the post-synthesis impregnation of metal precursors. Sequential activation forms small and uniform nanoparticles (1-2.5 nm in diameter), as confirmed through electron microscopy and X-ray absorption spectroscopy. Containment within the small micropores protected the nanoparticles against harsh thermal sintering conditions and prevented the fouling of the metal surface by coke, thus resulting in a high catalytic performance in n-dodecane hydroisomerization and methane decomposition. The remarkable specificity of the thiol to metal precursors and the dynamic acid-base interaction make these protocols extendable to various metal-zeolite systems, suitable for shape-selective catalysts in challenging chemical environments.

2.
JACS Au ; 2(10): 2327-2338, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36311841

ABSTRACT

Confining Au nanoparticles (NPs) in a restricted space (e.g., zeolite micropores) is a promising way of overcoming their inherent thermal instability and susceptibility to aggregation, which limit catalytic applications. However, such approaches involve complex, multistep encapsulation processes. Here, we describe a successful strategy and its guiding principles for confining small (<2 nm) and monodisperse Au NPs within commercially available beta and MFI zeolites, which can oxidize CO at 40 °C and show size-selective catalysis. This protocol involves post-synthetic modification of the zeolite internal surface with thiol groups, which confines AuCl x species inside microporous frameworks during the activation process whereby Au precursors are converted into Au nanoparticles. The resulting beta and MFI zeolites contain uniformly dispersed Au NPs throughout the void space, indicating that the intrinsic stability of the framework promotes resistance to sintering. By contrast, in situ scanning transmission electron microscopy (STEM) studies evidenced that Au precursors in bare zeolites migrate from the matrix to the external surface during activation, thereby forming large and poorly dispersed agglomerates. Furthermore, the resistance of confined Au NPs against sintering is likely relevant to the intrinsic stability of the framework, supported by extended X-ray absorption fine structure (EXAFS), H2 chemisorption, and CO Fourier transform infrared (FT-IR) studies. The Au NPs supported on commercial MFI maintain their uniform dispersity to a large extent after treatment at 700 °C that sinters Au clusters on mesoporous silicas or beta zeolites. Low-temperature CO oxidation and size-selective reactions highlight that most gold NPs are present inside the zeolite matrix with a diameter smaller than 2 nm. These findings illustrate how confinement favors small, uniquely stable, and monodisperse NPs, even for metals such as Au susceptible to cluster growth under conditions often required for catalytic use. Moreover, this strategy may be readily adapted to other zeolite frameworks that can be functionalized by thiol groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...