Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters










Publication year range
1.
Biophys J ; 117(9): 1563-1576, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31587828

ABSTRACT

Sticholysins are pore-forming toxins of biomedical interest and represent a prototype of proteins acting through the formation of protein-lipid or toroidal pores. Peptides spanning the N-terminus of sticholysins can mimic their permeabilizing activity and, together with the full-length toxins, have been used as a tool to understand the mechanism of pore formation in membranes. However, the lytic mechanism of these peptides and the lipid shape modulating their activity are not completely clear. In this article, we combine molecular dynamics simulations and experimental biophysical tools to dissect different aspects of the pore-forming mechanism of StII1-30, a peptide derived from the N-terminus of sticholysin II (StII). With this combined approach, membrane curvature induction and flip-flop movement of the lipids were identified as two important membrane remodeling steps mediated by StII1-30. Pore formation by this peptide was enhanced by the presence of the negatively curved lipid phosphatidylethanolamine in membranes. This lipid emerged not only as a facilitator of membrane interactions but also as a structural element of the StII1-30 pore that is recruited to the ring upon its assembly. Collectively, these, to our knowledge, new findings support a toroidal model for the architecture of the pore formed by StII1-30 and provide new molecular insight into the role of phosphatidylethanolamine as a membrane component that can easily integrate into the ring of toroidal pores, thus probably aiding in their stabilization. This study contributes to a better understanding of the molecular mechanism underlying the permeabilizing activity of StII1-30 and peptides or proteins acting via a toroidal pore mechanism and offers an informative framework for the optimization of the biomedical application of this and similar molecules.


Subject(s)
Cell Membrane/metabolism , Cnidarian Venoms/metabolism , Models, Molecular , Amino Acid Sequence , Animals , Cnidarian Venoms/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Permeability , Phosphatidylethanolamines/chemistry , Solutions , Swine
2.
Biochim Biophys Acta ; 1858(5): 980-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26514603

ABSTRACT

The bacterial membrane provides a target for antimicrobial peptides. There are two groups of bacteria that have characteristically different surface membranes. One is the Gram-negative bacteria that have an outer membrane rich in lipopolysaccharide. Several antimicrobials have been found to inhibit the synthesis of this lipid, and it is expected that more will be developed. In addition, antimicrobial peptides can bind to the outer membrane of Gram-negative bacteria and block passage of solutes between the periplasm and the cell exterior, resulting in bacterial toxicity. In Gram-positive bacteria, the major bacterial lipid component, phosphatidylglycerol can be chemically modified by bacterial enzymes to convert the lipid from anionic to cationic or zwitterionic form. This process leads to increased levels of resistance of the bacteria against polycationic antimicrobial agents. Inhibitors of this enzyme would provide protection against the development of bacterial resistance. There are antimicrobial agents that directly target a component of bacterial cytoplasmic membranes that can act on both Gram-negative as well as Gram-positive bacteria. Many of these are cyclic peptides with a rigid binding site capable of binding a lipid component. This binding targets antimicrobial agents to bacteria, rather than being toxic to host cells. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Lipid A/antagonists & inhibitors , Lipopolysaccharides/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Cardiolipins/chemistry , Cardiolipins/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/metabolism , Lipid A/chemistry , Lipid A/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Molecular Targeted Therapy , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/metabolism , Species Specificity
3.
Biochim Biophys Acta ; 1838(9): 2160-72, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24463069

ABSTRACT

Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Antimicrobial Cationic Peptides/metabolism , Biofilms/drug effects , Cell Membrane Permeability , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Cathelicidins
4.
RSC Adv ; (42)2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24307932

ABSTRACT

Cationic antimicrobial peptides are recognized templates for developing a new generation of antimicrobials to combat superbugs. Human cathelicidin LL-37 is an essential host defense molecule in human innate immunity. Previously, we identified KR-12 as the smallest antibacterial peptide of LL-37. KR-12 has a narrow activity spectrum since it is active against Gram-negative Escherichia coli but not Gram-positive Staphylococcus aureus. The functional roles of the basic amino acids of KR-12, however, have not yet been elucidated. An alanine scan of cationic amino acids of KR-12 provided evidence for their distinct roles in the activities of the peptides. Bacterial killing and membrane permeation experiments indicate that the R23A and K25A mutants, as well as the lysine-to-arginine mutant, were more potent than KR-12. Another three cationic residues (K18, R19, and R29) of KR-12, which are located in the hydrophilic face of the amphiphathic helix, appeared to be more important in clustering anionic lipids or hemolysis than R23 and K25 in the interfacial region. While the loss of interfacial R23 or K25 reduced peptide helicity, underscoring its important role in membrane binding, the overall increase in peptide activity of KR-12 could be ascribed to the increased peptide hydrophobicity that outweighed the role of basic charge in this case. In contrast, the mutations of interfacial R23 or K25 reduced peptide bactericidal activity of GF-17, an overlapping, more hydrophobic and potent peptide also derived from LL-37. Thus, the hydrophobic context of the peptide determines whether an alanine substitution of an interfacial basic residue increases or decreases membrane permeation and peptide activity.

5.
Biochim Biophys Acta ; 1828(11): 2757-62, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23954588

ABSTRACT

Sticholysins (Sts) I and II (StI/II) are pore-forming toxins (PFTs) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin family, a unique class of eukaryotic PFTs exclusively found in sea anemones. The role of lipid phase co-existence in the mechanism of the action of membranolytic proteins and peptides is not clearly understood. As for actinoporins, it has been proposed that phase separation promotes pore forming activity. However little is known about the effect of sticholysins on the phase separation of lipids in membranes. To gain insight into the mechanism of action of sticholysins, we evaluated the effect of these proteins on lipid segregation using differential scanning calorimetry (DSC) and atomic force microscopy (AFM). New evidence was obtained reflecting that these proteins reduce line tension in the membrane by promoting lipid mixing. In terms of the relevance for the mechanism of action of actinoporins, we hypothesize that expanding lipid disordered phases into lipid ordered phases decreases the lipid packing at the borders of the lipid raft, turning it into a more suitable environment for N-terminal insertion and pore formation.


Subject(s)
Cnidarian Venoms/pharmacology , Lipids/chemistry , Membrane Microdomains/metabolism , Sea Anemones/metabolism , Animals , Calorimetry, Differential Scanning , Microscopy, Atomic Force , Organic Chemicals/pharmacology , Sea Anemones/chemistry
6.
J Biol Chem ; 288(32): 23607-21, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23792963

ABSTRACT

Aggregatibacter actinomycetemcomitans produces a repeats-in-toxin (RTX) leukotoxin (LtxA) that selectively kills human immune cells. Binding of LtxA to its ß2 integrin receptor (lymphocyte function-associated antigen-1 (LFA-1)) results in the clustering of the toxin·receptor complex in lipid rafts. Clustering occurs only in the presence of LFA-1 and cholesterol, and LtxA is unable to kill cells lacking either LFA-1 or cholesterol. Here, the interaction of LtxA with cholesterol was measured using surface plasmon resonance and differential scanning calorimetry. The binding of LtxA to phospholipid bilayers increased by 4 orders of magnitude in the presence of 40% cholesterol relative to the absence of cholesterol. The affinity was specific to cholesterol and required an intact secondary structure. LtxA contains two cholesterol recognition/amino acid consensus (CRAC) sites; CRAC(336) ((333)LEEYSKR(339)) is highly conserved among RTX toxins, whereas CRAC(503) ((501)VDYLK(505)) is unique to LtxA. A peptide corresponding to CRAC(336) inhibited the ability of LtxA to kill Jurkat (Jn.9) cells. Although peptides corresponding to both CRAC(336) and CRAC(503) bind cholesterol, only CRAC(336) competitively inhibited LtxA binding to this sterol. A panel of full-length LtxA CRAC mutants demonstrated that an intact CRAC(336) site was essential for LtxA cytotoxicity. The conservation of CRAC(336) among RTX toxins suggests that this mechanism may be conserved among RTX toxins.


Subject(s)
Bacterial Toxins/chemistry , Cholesterol/chemistry , Exotoxins/chemistry , Membrane Microdomains/chemistry , Pasteurellaceae/chemistry , Amino Acid Motifs , Bacterial Toxins/metabolism , Cholesterol/metabolism , Exotoxins/metabolism , Humans , Jurkat Cells , Lymphocyte Function-Associated Antigen-1/chemistry , Lymphocyte Function-Associated Antigen-1/metabolism , Membrane Microdomains/metabolism , Pasteurellaceae/metabolism , Protein Binding , Surface Plasmon Resonance
7.
FASEB J ; 27(9): 3818-26, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23733749

ABSTRACT

Toward generating new tools for fighting multidrug-resistant (MDR) bacteria, we assessed the ability of a membrane-active peptide to sensitize gram-negative bacteria to various antibiotics. The mechanism for affecting inner and/or outer membrane functions was assessed by complementary biophysical methods (SPR, DSC, ITC). The implication of efflux pumps was examined using Acr-AB mutants, as tested with representative antibiotics, host defense peptides, and synthetic mimics. The ability to affect disease course systemically was compared for a single therapy and combination therapy, using the mouse thigh-infection model. The data show that potent antibiotic action can be provoked in vitro and in vivo, by a treatment combining two antibacterial compounds whose individual inefficiency against gram-negative bacteria stems from their efflux. Thus, at subminimal inhibitory concentrations, the lipopeptide-like sequence, N(α)(ω7)dodecenoyl-lysyl-[lysyl-aminododecanoyl-lysyl]-amide (designated C12(ω7)K-ß12), has, nonetheless, rapidly achieved a transient membrane depolarization, which deprived bacteria of the proton-motive force required for active efflux. Consequently, bacteria became significantly sensitive to intracellular targeting antibiotics. Collectively, these findings suggest a potentially useful approach for expanding the antibiotics sensitivity spectrum of MDR gram-negative bacteria to include efflux substrates.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Lipopeptides/pharmacology , Membrane Potentials/drug effects , Animals , Anti-Bacterial Agents/chemistry , Calorimetry, Differential Scanning , Lipopeptides/chemistry , Magnetic Resonance Spectroscopy , Male , Mice , Microbial Sensitivity Tests , Peptidomimetics , Proton-Motive Force/drug effects , Surface Plasmon Resonance , Thigh/microbiology
8.
J Virol ; 87(7): 3640-54, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23283943

ABSTRACT

Entry of enveloped viruses requires fusion of viral and cellular membranes. Fusion requires the formation of an intermediate stalk structure, in which only the outer leaflets are fused. The stalk structure, in turn, requires the lipid bilayer of the envelope to bend into negative curvature. This process is inhibited by enrichment in the outer leaflet of lipids with larger polar headgroups, which favor positive curvature. Accordingly, phospholipids with such shape inhibit viral fusion. We previously identified a compound, 5-(perylen-3-yl)ethynyl-2'-deoxy-uridine (dUY11), with overall shape and amphipathicity similar to those of these phospholipids. dUY11 inhibited the formation of the negative curvature necessary for stalk formation and the fusion of a model enveloped virus, vesicular stomatitis virus (VSV). We proposed that dUY11 acted by biophysical mechanisms as a result of its shape and amphipathicity. To test this model, we have now characterized the mechanisms against influenza virus and HCV of 5-(perylen-3-yl)ethynyl-arabino-uridine (aUY11), which has shape and amphipathicity similar to those of dUY11 but contains an arabino-nucleoside. aUY11 interacted with envelope lipids to inhibit the infectivity of influenza virus, hepatitis C virus (HCV), herpes simplex virus 1 and 2 (HSV-1/2), and other enveloped viruses. It specifically inhibited the fusion of influenza virus, HCV, VSV, and even protein-free liposomes to cells. Furthermore, aUY11 inhibited the formation of negative curvature in model lipid bilayers. In summary, the arabino-derived aUY11 and the deoxy-derived dUY11 act by the same antiviral mechanisms against several enveloped but otherwise unrelated viruses. Therefore, chemically unrelated compounds of appropriate shape and amphipathicity target virion envelope lipids to inhibit formation of the negative curvature required for fusion, inhibiting infectivity by biophysical, not biochemical, mechanisms.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Influenza A virus/drug effects , Membrane Lipids/metabolism , Perylene/analogs & derivatives , Uridine/analogs & derivatives , Virus Internalization/drug effects , Animals , Calorimetry, Differential Scanning , Chlorocebus aethiops , Dogs , Intracellular Signaling Peptides and Proteins , Liposomes , Madin Darby Canine Kidney Cells , Mice , Microscopy, Confocal , NIH 3T3 Cells , Peptides , Perylene/pharmacology , Species Specificity , Spectrometry, Fluorescence , Uridine/pharmacology , Vero Cells
9.
J Biol Chem ; 288(1): 111-21, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23150663

ABSTRACT

The nucleoside diphosphate kinase Nm23-H4/NDPK-D forms symmetrical hexameric complexes in the mitochondrial intermembrane space with phosphotransfer activity using mitochondrial ATP to regenerate nucleoside triphosphates. We demonstrate the complex formation between Nm23-H4 and mitochondrial GTPase OPA1 in rat liver, suggesting its involvement in local and direct GTP delivery. Similar to OPA1, Nm23-H4 is further known to strongly bind in vitro to anionic phospholipids, mainly cardiolipin, and in vivo to the inner mitochondrial membrane. We show here that such protein-lipid complexes inhibit nucleoside diphosphate kinase activity but are necessary for another function of Nm23-H4, selective intermembrane lipid transfer. Mitochondrial lipid distribution was analyzed by liquid chromatography-mass spectrometry using HeLa cells expressing either wild-type Nm23-H4 or a membrane binding-deficient mutant at a site predicted based on molecular modeling to be crucial for cardiolipin binding and transfer mechanism. We found that wild type, but not the mutant enzyme, selectively increased the content of cardiolipin in the outer mitochondrial membrane, but the distribution of other more abundant phospholipids (e.g. phosphatidylcholine) remained unchanged. HeLa cells expressing the wild-type enzyme showed increased accumulation of Bax in mitochondria and were sensitized to rotenone-induced apoptosis as revealed by stimulated release of cytochrome c into the cytosol, elevated caspase 3/7 activity, and increased annexin V binding. Based on these data and molecular modeling, we propose that Nm23-H4 acts as a lipid-dependent mitochondrial switch with dual function in phosphotransfer serving local GTP supply and cardiolipin transfer for apoptotic signaling and putative other functions.


Subject(s)
Cardiolipins/physiology , Intracellular Membranes/metabolism , Lipids/chemistry , Nucleoside Diphosphate Kinase D/chemistry , Nucleoside Diphosphate Kinase D/physiology , Animals , Apoptosis , Cardiolipins/chemistry , GTP Phosphohydrolases/chemistry , Lipid Metabolism , Liver/metabolism , Male , Models, Molecular , Phospholipids/chemistry , Protein Binding , Protein Conformation , Rats , Rats, Wistar
10.
PLoS One ; 7(8): e43178, 2012.
Article in English | MEDLINE | ID: mdl-22912820

ABSTRACT

A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state (31)P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could have more general implications for many physiological membrane-related functions that are relevant for health and disease.


Subject(s)
Cell Membrane/metabolism , Imidazolidines/metabolism , Liposomes/metabolism , Models, Molecular , Phosphocreatine/analogs & derivatives , Phosphocreatine/metabolism , Phospholipids/metabolism , Calorimetry, Differential Scanning , Imidazolidines/chemistry , Magnetic Resonance Spectroscopy , Permeability , Phosphocreatine/chemistry , Phospholipids/chemistry , Surface Plasmon Resonance
11.
Antimicrob Agents Chemother ; 56(9): 4827-32, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22751534

ABSTRACT

Toward developing new tools for fighting resistance to antibiotics, we investigated the antibacterial properties of a new decanoyl-based oligo-acyl-lysyl (OAK) hexamer, aminododecanoyl-lysyl-[aminodecanoyl-lysyl](5) (α(12)-5α(10)). The OAK exhibited preferential activity against Gram-negative bacteria (GNB), as determined using 36 strains, including diverse species, with an MIC(90) of 6.2 µM. The OAK's bactericidal mode of action was associated with rapid membrane depolarization and cell permeabilization, suggesting that the inner membrane was the primary target, whereas the observed binding affinity to lipoteichoic acid suggested that inefficacy against Gram-positive species resulted from a cell wall interaction preventing α(12)-5α(10) from reaching internal targets. Interestingly, perturbation of the inner membrane structure and function was preserved at sub-MIC values. This prompted us to assess the OAK's effect on the proton motive force-dependent efflux pump AcrAB-TolC, implicated in the low sensitivity of GNB to various antibiotics, including erythromycin. We found that under sub-MIC conditions, wild-type Escherichia coli was significantly more sensitive to erythromycin (the MIC dropped by >10-fold), unlike its acr-deletion mutant. Collectively, the data suggest a useful approach for treating GNB infections through overcoming antibiotic efflux.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Bacterial/genetics , Gram-Negative Bacteria/drug effects , Oligopeptides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antimicrobial Cationic Peptides/chemical synthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Membrane Permeability , Erythromycin/pharmacology , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Lipopolysaccharides/metabolism , Microbial Sensitivity Tests , Mutation , Oligopeptides/chemical synthesis , Species Specificity , Teichoic Acids/metabolism
12.
Cell Microbiol ; 14(6): 869-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22309134

ABSTRACT

The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while (31) P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization.


Subject(s)
Bacterial Toxins/pharmacology , Exotoxins/pharmacology , Lipid Bilayers/chemistry , Liposomes/chemistry , Pasteurellaceae , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Cell Shape/drug effects , Exotoxins/chemistry , Exotoxins/metabolism , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Humans , Jurkat Cells , Microvilli/drug effects , Microvilli/ultrastructure , Phase Transition , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry
13.
Antimicrob Agents Chemother ; 56(2): 845-56, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22083479

ABSTRACT

Human cathelicidin LL-37 is a critical cationic antimicrobial peptide for host defense against infection, immune modulation, and wound healing. This article elucidates the functional roles of the cationic side chains of the major antimicrobial region of LL-37, corresponding to residues 17 to 32 (designated GF-17). Antimicrobial assays, killing kinetics studies, and vesicle leakage experiments all indicate that a conversion of lysines to arginines affected the ability of the peptide to kill the Gram-positive Staphylococcus aureus strain USA300. Alanine scanning experiments show that S. aureus is less sensitive than Escherichia coli to a single cationic residue mutation of GF-17. Among the five cationic residues, R23 appears to be somewhat important in killing S. aureus. However, R23 and K25 of GF-17 are of prime importance in killing the Gram-negative organism E. coli. In particular, R23 is essential for (i) rapid recognition, (ii) permeation of the E. coli outer membrane, (iii) clustering of anionic lipids in a membrane system mimicking the E. coli inner membrane, and (iv) membrane disruption. Bacterial aggregation (i.e., rapid recognition via charge neutralization) is the first step of the peptide action. Structurally, R23 is located in the interface (i.e., the first action layer), a situation ideal for the interactions listed above. In contrast, residues K18, R19, and R29 are on the hydrophilic surface of the amphipathic helix and play only a secondary role. Mapping of the functional spectrum of cationic residues of GF-17 provides a solid basis for engineering bacterium-specific antimicrobials using this highly potent template.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cations/metabolism , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Amino Acid Substitution , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/metabolism , Cations/chemistry , Humans , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Mutation , Protein Structure, Secondary , Cathelicidins
14.
Retrovirology ; 8: 99, 2011 Dec 06.
Article in English | MEDLINE | ID: mdl-22145853

ABSTRACT

BACKGROUND: We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. RESULTS: We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. CONCLUSIONS: Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.


Subject(s)
Cell Membrane/metabolism , Endocytosis , Endosomes/virology , HIV-1/pathogenicity , Membrane Lipids/metabolism , Virus Internalization , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Cell Membrane/virology , Cytoplasm/metabolism , Cytoplasm/virology , Endosomes/metabolism , Fluorescent Dyes/metabolism , HIV Infections/virology , HIV-1/physiology , HeLa Cells , Humans , Hydrazones/metabolism , Virus Release
15.
FASEB J ; 25(10): 3336-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21676947

ABSTRACT

The cationic antimicrobial oligo-acyl-lysyls (OAKs) interact with lipid mixtures mimicking the composition of bacterial cytoplasmic membranes. We have reported the ability of one such OAK, C(12)K-7α(8), to cluster anionic lipids and to promote a structural change with lipid bilayers to form rolled cylindrical structures or cochleates, without requiring divalent cations for their assembly. These assemblies can be exploited for drug delivery, permitting their synergistic use with antibiotics in systemic therapy to increase efficacy and reduce toxicity. Our previous studies of the biophysical properties of these systems led us to select mixtures with the goal of optimizing their potential for enhancing effectiveness in combating bacterial multidrug resistance. Here, we further investigate the properties of such mixtures that result in enhanced in vivo activity. The role of erythromycin in the assembly of cochleates with OAK in the gel and the liquid crystalline states were assessed, as well as the encapsulation efficiency of the systems chosen. In addition, we found that erythromycin did not undermine the ability of OAKs to induce fusion of vesicles, fusion being an essential component of cochleate formation. The in vivo activity of the new assemblies tested resulted in higher survival rates of animals infected with multidrug resistant bacteria.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Lipids/chemistry , Lipids/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Calorimetry, Differential Scanning , Erythromycin/chemistry , Erythromycin/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Liposomes/chemistry , Male , Mice , Mice, Inbred ICR , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects
16.
Cell Mol Life Sci ; 68(13): 2177-88, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21573783

ABSTRACT

Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Cell Membrane/chemistry , Drug Delivery Systems , Lysine/chemistry , Membrane Lipids/chemistry , Anti-Bacterial Agents/administration & dosage , Antimicrobial Cationic Peptides/administration & dosage , Bacteria/chemistry , Bacteria/drug effects , Cell Membrane/drug effects , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Humans , Liposomes , Membrane Lipids/administration & dosage
17.
J Biol Chem ; 286(20): 18170-80, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21454544

ABSTRACT

Peroxidation of plasma lipoproteins has been implicated in the endothelial cell activation and monocyte adhesion that initiate atherosclerosis, but the exact mechanisms underlying this activation remain unclear. Lipid peroxidation generates lipid aldehydes, including the γ-ketoaldehydes (γKA), also termed isoketals or isolevuglandins, that readily modify the amine headgroup of phosphatidylethanolamine (PE). We hypothesized that aldehyde modification of PE could mediate some of the proinflammatory effects of lipid peroxidation. We found that PE modified by γKA (γKA-PE) induced THP-1 monocyte adhesion to human umbilical cord endothelial cells. γKA-PE also induced expression of adhesion molecules and increased MCP-1 and IL-8 mRNA in human umbilical cord endothelial cells. To determine the structural requirements for γKA-PE activity, we tested several related compounds. PE modified by 4-oxo-pentanal induced THP-1 adhesion, but N-glutaroyl-PE and C(18:0)N-acyl-PE did not, suggesting that an N-pyrrole moiety was essential for cellular activity. As the N-pyrrole headgroup might distort the membrane, we tested the effect of the pyrrole-PEs on membrane parameters. γKA-PE and 4-oxo-pentanal significantly reduced the temperature for the liquid crystalline to hexagonal phase transition in artificial bilayers, suggesting that these pyrrole-PE markedly altered membrane curvature. Additionally, fluorescently labeled γKA-PE rapidly internalized to the endoplasmic reticulum (ER); γKA-PE induced C/EBP homologous protein CHOP and BiP expression and p38 MAPK activity, and inhibitors of ER stress reduced γKA-PE-induced C/EBP homologous protein CHOP and BiP expression as well as EC activation, consistent with γKA-PE inducing ER stress responses that have been previously linked to inflammatory chemokine expression. Thus, γKA-PE is a potential mediator of the inflammation induced by lipid peroxidation.


Subject(s)
Cell Membrane/metabolism , Endoplasmic Reticulum , Endothelial Cells/metabolism , Lipid Peroxidation , Phosphatidylethanolamines/metabolism , Cell Adhesion Molecules/biosynthesis , Cell Line , Chemokine CCL2/biosynthesis , Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins/metabolism , Humans , Interleukin-8/biosynthesis , Lipid Bilayers , Transcription Factor CHOP/metabolism , Unfolded Protein Response
18.
J Pept Sci ; 17(5): 298-305, 2011 May.
Article in English | MEDLINE | ID: mdl-21480436

ABSTRACT

Many antimicrobial agents that target bacteria are cationic and can interact with the anionic lipid components that are exposed on the bacterial membrane. Bacteria vary widely in the nature of the major lipid components that are in the cell membrane. Those bacteria with both anionic as well as zwitterionic or neutral lipids can be induced to form domains in the presence of antimicrobial peptides possessing several cationic charges. This segregation of anionic and zwitterionic lipids into domains can result in the arrest of cell growth or in cell death. Such agents are generally more toxic to Gram-negative bacteria, than to Gram-positive ones. These findings emphasize the importance of the lipid composition of bacterial membranes in determining the susceptibility of the organism to the action of certain antimicrobial agents.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Bacteria/chemistry , Bacteria/drug effects , Cell Membrane/metabolism , Membrane Lipids/chemistry , Cell Membrane/drug effects
19.
J Biol Chem ; 286(15): 13226-34, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21292763

ABSTRACT

One of the best characterized fusion proteins, the influenza virus hemagglutinin (HA), mediates fusion between the viral envelope and the endosomal membrane during viral entry into the cell. In the initial conformation of HA, its fusogenic subunit, the transmembrane protein HA2, is locked in a metastable conformation by the receptor-binding HA1 subunit of HA. Acidification in the endosome triggers HA2 refolding toward the final lowest energy conformation. Is the fusion process driven by this final conformation or, as often suggested, by the energy released by protein restructuring? Here we explored structural properties as well as the fusogenic activity of the full sized trimeric HA2(1-185) (here called HA2*) that presents the final conformation of the HA2 ectodomain. We found HA2* to mediate fusion between lipid bilayers and between biological membranes in a low pH-dependent manner. Two mutations known to inhibit HA-mediated fusion strongly inhibited the fusogenic activity of HA2*. At surface densities similar to those of HA in the influenza virus particle, HA2* formed small fusion pores but did not expand them. Our results confirm that the HA1 subunit responsible for receptor binding as well as the transmembrane and cytosolic domains of HA2 is not required for fusion pore opening and substantiate the hypothesis that the final form of HA2 is more important for fusion than the conformational change that generates this form.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Lipid Bilayers/metabolism , Membrane Fusion , Orthomyxoviridae/metabolism , Protein Folding , Animals , Cell Line , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Orthomyxoviridae/chemistry , Orthomyxoviridae/genetics , Protein Structure, Tertiary , Spodoptera
20.
J Virol ; 85(8): 3968-77, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21307202

ABSTRACT

The paramyxovirus fusion (F) glycoprotein is anchored in the virion membrane in a metastable, pretriggered form. Once triggered, the F protein undergoes a dramatic conformational extension that inserts its hydrophobic fusion peptide into the target cell membrane, then folds back on itself to bring the membranes together and initiate fusion. Unlike most other paramyxoviruses, the respiratory syncytial virus (RSV) F protein alone is sufficient to mediate membrane fusion and virus infection. To study the triggering mechanism of the RSV F protein, we have generated a soluble F (sF) protein by replacing the transmembrane and cytoplasmic tail domains with a 6His tag. The sF protein is secreted efficiently from 293T cells in a fully cleaved form. It is recognized by neutralizing monoclonal antibodies, appears spherical by electron microscopic analysis, and is not aggregated, all consistent with a native, pretriggered trimer. The sF protein was purified on a Ni(+2) column and eluted with 50 mM phosphate buffer containing 500 mM NaCl and 250 mM imidazole. Dialysis against 10 mM buffer caused the sF protein to trigger, forming "hat pin"-shaped molecules that aggregated as rosettes, characteristic of the posttriggered form. Further dialysis experiments indicated that the efficiency of triggering correlated well with the reduction of buffer molarity. Reduction of buffer molarity by dilution also resulted in exposure of the fusion peptide, as detected by liposome association, confirming sF protein triggering. Mutation of the furin cleavage site adjacent to the fusion peptide prevented liposome association, further confirming that association is via the fusion peptide.


Subject(s)
Respiratory Syncytial Viruses/physiology , Viral Fusion Proteins/metabolism , Virus Internalization , Buffers , Humans , Osmotic Pressure , Respiratory Syncytial Viruses/genetics , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...