Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Coll Emerg Physicians Open ; 3(1): e12605, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35072154

ABSTRACT

BACKGROUND: The BinaxNOW coronavirus disease 2019 (COVID-19) Ag Card test (Abbott Diagnostics Scarborough, Inc.) is a lateral flow immunochromatographic point-of-care test for the qualitative detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein antigen. It provides results from nasal swabs in 15 minutes. Our purpose was to determine its sensitivity and specificity for a COVID-19 diagnosis. METHODS: Eligible patients had symptoms of COVID-19 or suspected exposure. After consent, 2 nasal swabs were collected; 1 was tested using the Abbott RealTime SARS-CoV-2 (ie, the gold standard polymerase chain reaction test) and the second run on the BinaxNOW point of care platform by emergency department staff. RESULTS: From July 20 to October 28, 2020, 767 patients were enrolled, of which 735 had evaluable samples. Their mean (SD) age was 46.8 (16.6) years, and 422 (57.4%) were women. A total of 623 (84.8%) patients had COVID-19 symptoms, most commonly shortness of breath (n = 404; 55.0%), cough (n = 314; 42.7%), and fever (n = 253; 34.4%). Although 460 (62.6%) had symptoms ≤7 days, the mean (SD) time since symptom onset was 8.1 (14.0) days. Positive tests occurred in 173 (23.5%) and 141 (19.2%) with the gold standard versus BinaxNOW test, respectively. Those with symptoms >2 weeks had a positive test rate roughly half of those with earlier presentations. In patients with symptoms ≤7 days, the sensitivity, specificity, and negative and positive predictive values for the BinaxNOW test were 84.6%, 98.5%, 94.9%, and 95.2%, respectively. CONCLUSIONS: The BinaxNOW point-of-care test has good sensitivity and excellent specificity for the detection of COVID-19. We recommend using the BinasNOW for patients with symptoms up to 2 weeks.

2.
Front Immunol ; 12: 628113, 2021.
Article in English | MEDLINE | ID: mdl-33790901

ABSTRACT

Background: The immunologic pathways activated during snakebite envenoming (SBE) are poorly described, and their association with recovery is unclear. The immunologic response in SBE could inform a prognostic model to predict recovery. The purpose of this study was to develop pre- and post-antivenom prognostic models comprised of clinical features and immunologic cytokine data that are associated with recovery from SBE. Materials and Methods: We performed a prospective cohort study in an academic medical center emergency department. We enrolled consecutive patients with Crotalinae SBE and obtained serum samples based on previously described criteria for the Surgical Critical Care Initiative (SC2i)(ClinicalTrials.gov Identifier: NCT02182180). We assessed a standard set of clinical variables and measured 35 unique cytokines using Luminex Cytokine 35-Plex Human Panel pre- and post-antivenom administration. The Patient-Specific Functional Scale (PSFS), a well-validated patient-reported outcome of functional recovery, was assessed at 0, 7, 14, 21 and 28 days and the area under the patient curve (PSFS AUPC) determined. We performed Bayesian Belief Network (BBN) modeling to represent relationships with a diagram composed of nodes and arcs. Each node represents a cytokine or clinical feature and each arc represents a joint-probability distribution (JPD). Results: Twenty-eight SBE patients were enrolled. Preliminary results from 24 patients with clinical data, 9 patients with pre-antivenom and 11 patients with post-antivenom cytokine data are presented. The group was mostly female (82%) with a mean age of 38.1 (SD ± 9.8) years. In the pre-antivenom model, the variables most closely associated with the PSFS AUPC are predominantly clinical features. In the post-antivenom model, cytokines are more fully incorporated into the model. The variables most closely associated with the PSFS AUPC are age, antihistamines, white blood cell count (WBC), HGF, CCL5 and VEGF. The most influential variables are age, antihistamines and EGF. Both the pre- and post-antivenom models perform well with AUCs of 0.87 and 0.90 respectively. Discussion: Pre- and post-antivenom networks of cytokines and clinical features were associated with functional recovery measured by the PSFS AUPC over 28 days. With additional data, we can identify prognostic models using immunologic and clinical variables to predict recovery from SBE.


Subject(s)
Crotalid Venoms/immunology , Crotalinae/immunology , Cytokines/blood , Snake Bites/immunology , Adult , Aged , Animals , Antivenins/therapeutic use , Biomarkers/blood , Crotalid Venoms/antagonists & inhibitors , Female , Humans , Male , Middle Aged , Models, Immunological , Predictive Value of Tests , Prospective Studies , Recovery of Function , Snake Bites/blood , Snake Bites/drug therapy , Time Factors , Treatment Outcome
3.
JAMA ; 324(21): 2165-2176, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33165621

ABSTRACT

Importance: Data on the efficacy of hydroxychloroquine for the treatment of coronavirus disease 2019 (COVID-19) are needed. Objective: To determine whether hydroxychloroquine is an efficacious treatment for adults hospitalized with COVID-19. Design, Setting, and Participants: This was a multicenter, blinded, placebo-controlled randomized trial conducted at 34 hospitals in the US. Adults hospitalized with respiratory symptoms from severe acute respiratory syndrome coronavirus 2 infection were enrolled between April 2 and June 19, 2020, with the last outcome assessment on July 17, 2020. The planned sample size was 510 patients, with interim analyses planned after every 102 patients were enrolled. The trial was stopped at the fourth interim analysis for futility with a sample size of 479 patients. Interventions: Patients were randomly assigned to hydroxychloroquine (400 mg twice daily for 2 doses, then 200 mg twice daily for 8 doses) (n = 242) or placebo (n = 237). Main Outcomes and Measures: The primary outcome was clinical status 14 days after randomization as assessed with a 7-category ordinal scale ranging from 1 (death) to 7 (discharged from the hospital and able to perform normal activities). The primary outcome was analyzed with a multivariable proportional odds model, with an adjusted odds ratio (aOR) greater than 1.0 indicating more favorable outcomes with hydroxychloroquine than placebo. The trial included 12 secondary outcomes, including 28-day mortality. Results: Among 479 patients who were randomized (median age, 57 years; 44.3% female; 37.2% Hispanic/Latinx; 23.4% Black; 20.1% in the intensive care unit; 46.8% receiving supplemental oxygen without positive pressure; 11.5% receiving noninvasive ventilation or nasal high-flow oxygen; and 6.7% receiving invasive mechanical ventilation or extracorporeal membrane oxygenation), 433 (90.4%) completed the primary outcome assessment at 14 days and the remainder had clinical status imputed. The median duration of symptoms prior to randomization was 5 days (interquartile range [IQR], 3 to 7 days). Clinical status on the ordinal outcome scale at 14 days did not significantly differ between the hydroxychloroquine and placebo groups (median [IQR] score, 6 [4-7] vs 6 [4-7]; aOR, 1.02 [95% CI, 0.73 to 1.42]). None of the 12 secondary outcomes were significantly different between groups. At 28 days after randomization, 25 of 241 patients (10.4%) in the hydroxychloroquine group and 25 of 236 (10.6%) in the placebo group had died (absolute difference, -0.2% [95% CI, -5.7% to 5.3%]; aOR, 1.07 [95% CI, 0.54 to 2.09]). Conclusions and Relevance: Among adults hospitalized with respiratory illness from COVID-19, treatment with hydroxychloroquine, compared with placebo, did not significantly improve clinical status at day 14. These findings do not support the use of hydroxychloroquine for treatment of COVID-19 among hospitalized adults. Trial Registration: ClinicalTrials.gov: NCT04332991.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine/therapeutic use , Adult , Aged , Female , Humans , Hydroxychloroquine/administration & dosage , Male , Middle Aged , Treatment Failure
4.
Ann Am Thorac Soc ; 17(9): 1144-1153, 2020 09.
Article in English | MEDLINE | ID: mdl-32492354

ABSTRACT

The ORCHID (Outcomes Related to COVID-19 treated with Hydroxychloroquine among In-patients with symptomatic Disease) trial is a multicenter, blinded, randomized trial of hydroxychloroquine versus placebo for the treatment of adults hospitalized with coronavirus disease (COVID-19). This document provides the rationale and background for the trial and highlights key design features. We discuss five novel challenges to the design and conduct of a large, multicenter, randomized trial during a pandemic, including 1) widespread, off-label use of the study drug before the availability of safety and efficacy data; 2) the need to adapt traditional procedures for documentation of informed consent during an infectious pandemic; 3) developing a flexible and robust Bayesian analysis incorporating significant uncertainty about the disease, outcomes, and treatment; 4) obtaining indistinguishable drug and placebo without delaying enrollment; and 5) rapidly obtaining administrative and regulatory approvals. Our goals in describing how the ORCHID trial progressed from study conception to enrollment of the first patient in 15 days are to inform the development of other high-quality, multicenter trials targeting COVID-19. We describe lessons learned to improve the efficiency of future clinical trials, particularly in the setting of pandemics. The ORCHID trial will provide high-quality, clinically relevant data on the safety and efficacy of hydroxychloroquine for the treatment of COVID-19 among hospitalized adults.Clinical trial registered with www.clinicaltrials.gov (NCT04332991).


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Hydroxychloroquine/administration & dosage , Pandemics , Pneumonia, Viral/drug therapy , Adult , Antimalarials/administration & dosage , COVID-19 , Coronavirus Infections/epidemiology , Dose-Response Relationship, Drug , Hospitalization/trends , Humans , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Single-Blind Method , Treatment Outcome
5.
JCI Insight ; 4(16)2019 08 22.
Article in English | MEDLINE | ID: mdl-31434802

ABSTRACT

Multiple organ failure (MOF) is the leading cause of late mortality and morbidity in patients who are admitted to intensive care units (ICUs). However, there is an epidemiologic discrepancy in the mechanism of underlying immunologic derangement dependent on etiology between sepsis and trauma patients in MOF. We hypothesized that damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), while both involved in the development of MOF, contribute differently to the systemic innate immune derangement and coagulopathic changes. We found that DAMPs not only produce weaker innate immune activation than counterpart PAMPs, but also induce less TLR signal desensitization, contribute to less innate immune cell death, and propagate more robust systemic coagulopathic effects than PAMPs. This differential contribution to MOF provides further insight into the contributing factors to late mortality in critically ill trauma and sepsis patients. These findings will help to better prognosticate patients at risk of MOF and may provide future therapeutic molecular targets in this disease process.


Subject(s)
Alarmins/physiology , Critical Illness/mortality , Multiple Organ Failure/mortality , Pathogen-Associated Molecular Pattern Molecules/metabolism , Adult , Animals , Bacteria/pathogenicity , Blood Coagulation , Cells, Cultured , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , Multiple Organ Failure/metabolism , Necrosis , Rats, Sprague-Dawley , Sepsis/immunology , Sepsis/metabolism , Sepsis/mortality , Wounds and Injuries/immunology , Wounds and Injuries/metabolism , Wounds and Injuries/mortality
6.
Front Immunol ; 9: 190, 2018.
Article in English | MEDLINE | ID: mdl-29472928

ABSTRACT

Despite significant improvements in injury prevention and emergency response, injury-related death and morbidity continues to increase in the US and worldwide. Patients with trauma, invasive operations, anti-cancer treatment, and organ transplantation produce a host of danger signals and high levels of pro-inflammatory and pro-thrombotic mediators, such as damage-associated molecular patterns (DAMPs) and extracellular vesicles (EVs). DAMPs (e.g., nucleic acids, histone, high-mobility group box 1 protein, and S100) are molecules released from injured, stressed, or activated cells that act as endogenous ligands of innate immune receptors, whereas EVs (e.g., microparticle and exosome) are membranous vesicles budding off from plasma membranes and act as messengers between cells. DAMPs and EVs can stimulate multiple innate immune signaling pathways and coagulation cascades, and uncontrolled DAMP and EV production causes systemic inflammatory and thrombotic complications and secondary organ failure (SOF). Thus, DAMPs and EVs represent potential therapeutic targets and diagnostic biomarkers for SOF. High plasma levels of DAMPs and EVs have been positively correlated with mortality and morbidity of patients or animals with trauma or surgical insults. Blocking or neutralizing DAMPs using antibodies or small molecules has been demonstrated to ameliorate sepsis and SOF in animal models. Furthermore, a membrane immobilized with nucleic acid-binding polymers captured and removed multiple DAMPs and EVs from extracellular fluids, thereby preventing the onset of DAMP- and EV-induced inflammatory and thrombotic complications in vitro and in vivo. In this review, we will summarize the current state of knowledge of DAMPs, EVs, and SOF and discuss potential therapeutics and preventive intervention for organ failure secondary to trauma, surgery, anti-cancer therapy, and allogeneic transplantation.


Subject(s)
Alarmins/immunology , Extracellular Vesicles/drug effects , Multiple Organ Failure/prevention & control , Thrombosis/immunology , Animals , Blood Coagulation , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Mice , Multiple Organ Failure/drug therapy , Neoplasms/complications , Sepsis/complications , Sepsis/drug therapy , Thrombosis/prevention & control , Wounds and Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...