Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 13(41): 9777-9785, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36226837

ABSTRACT

Titanium (Ti), aluminum (Al), and boron (B) reactive mixed-metal nanopowders (Ti-Al-B RMNPs) represent attractive additives to hydrocarbon fuels such as exo-tetrahydrodicyclopentadiene (C10H16; JP-10) enhancing the limited volumetric energy densities of traditional hydrocarbons, but fundamental mechanisms and combustion stages in the oxidation have been obscure. This understanding is of vital significance in the development of next-generation propulsion systems and energy-generation technologies. Here, we expose distinct oxidation stages of single droplets of JP-10 doped with Ti-Al-B-RMNP exploiting innovative ultrasonic levitator technology coupled with time-resolved spectroscopic (UV-vis) and imaging diagnostics (optical and infrared). Two spatially and temporally distinct stages of combustion define a glow flame stage in which JP-10 and nanoparticles combust via a homogeneous gas phase (Al) and heterogeneous gas-surface oxidation (Ti, B) and a slower diffusion flame stage associated with the oxidation of JP-10. These findings enable the development of next-generation RMNP fuel additives with superior payload delivery capabilities.

2.
Inorg Chem ; 61(23): 8834-8842, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35653654

ABSTRACT

The origin of thermochromism displayed by the hybrid material [Ni(dieten)2](BF4)2 (dieten = N,N-diethylethylenediamine) is explored by anion substitution of the tetrafluoroborate anions (BF4-) with varying percentages (0-25%) of bromide (Br-). Differential scanning calorimetry and variable-temperature diffuse reflectance spectroscopy indicate that the yellow-orange to orange-red thermochromic transition inherent to undoped [Ni(dieten)2](BF4)2 shifts from 100 to 90 °C as the doping concentration increases from 0 to 25%. Similarly, a 15 nm line broadening of the Kubelka-Munk transformed diffuse reflectance signal (proportional to the absorbance of the complex) and a broadening of the endothermic transition are observed with increasing Br- doping. The structure of the undoped [Ni(dieten)2](BF4)2, determined by single-crystal X-ray diffraction, is presented, and powder X-ray diffraction was used to confirm that the crystal structure and crystallinity of each doped sample remains unchanged from the BF4- phase. We provide evidence for an underlying mechanism of thermochromism that is linked to hydrogen bonding within the crystal structure and which can be manipulated via targeted modulation of lattice anions. The mechanism proposed here is likely applicable to other materials within the family of dieten complexes ([M(dieten)2](X)2, where M = Ni2+, Cu2+ and X = BF4-, ClO4-, NO3-).

3.
J Phys Chem A ; 126(1): 125-144, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34935392

ABSTRACT

We report the results on the combustion of single, levitated droplets of exo-tetrahydrodicyclopentadiene (JP-10) doped with titanium-aluminum-boron (Ti-Al-B) reactive metal nanopowders (RMNPs) in an oxygen (60%)-argon (40%) atmosphere by exploiting an ultrasonic levitator with droplets ignited by a carbon dioxide laser. Ultraviolet-visible (UV-vis) emission spectroscopy revealed the presence of gas-phase aluminum (Al) and titanium (Ti) atoms. These atoms can be oxidized in the gas phase by molecular oxygen to form spectroscopically detected aluminum monoxide (AlO) and titanium monoxide (TiO) transients. Analysis of the optical ignition videos supports that the nanoparticles are ignited before JP-10. The detection of boron monoxide (BO) further proposes an active surface chemistry through the oxidation of the RMNPs and the release of at least BO into the gas phase. The oxidation of gas-phase BO by molecular oxygen to boron dioxide (BO2) plus atomic oxygen might operate in the gas phase, although the involvement of surface oxidation processes of RMNPs to BO2 cannot be discounted. The UV-vis emission spectra also revealed the key reactive intermediates (OH, CH, C2, and HCO) of the oxidation of JP-10. Electronic structure calculations reveal that the presence of reactive radicals has a profound impact on the oxidation of JP-10. Although titanium monoxide (TiO) reacts to produce titanium dioxide (TiO2), it does not engage in an active JP-10 chemistry as all abstraction pathways are endoergic by more than 217 kJ mol-1. This is similar for atomic aluminum and titanium, whose hydrogen abstraction reactions from JP-10 were revealed to be endoergic by at least 77 kJ mol-1. Therefore, aluminum and titanium react preferentially with molecular oxygen to produce their monoxides. However, the formation of BO, AlO, and BO2 supplies a pool of highly reactive radicals, which can abstract hydrogen from JP-10 via transition states ranging from only 1 to 5 kJ mol-1 above the separated reactants, forming JP-10 radicals along with the hydrogen abstraction products (boron hydride oxide, aluminum monohydroxide, and metaboric acid) in the overall exoergic reactions. These abstraction barriers are well below the barriers of abstractions for ground-state atomic oxygen and molecular oxygen. In this sense, gas-phase BO, AlO, and BO2 catalyze the oxidation of gas-phase JP-10 via hydrogen abstraction, forming highly reactive JP-10 radicals. Overall, the addition of RMNPs to JP-10 not only provides a higher energy density fuel but is also expected to lead to shorter ignition delays compared to pure JP-10 due to the highly reactive pool of radicals (BO, AlO, and BO2) formed in the initial stage of the oxidation process.

4.
Adv Mater ; 32(42): e2003667, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32924200

ABSTRACT

High proton conductivity is reported for unhumidified ammonium borosulfate, NH4 [B(SO4 )2 ], a solid acid coordination polymer that contains 1D, hydrogen-bonded NH4 + ···1 ∞ [B(SO4 )4/2 ]- chains. NH4 [B(SO4 )2 ] is thermally stable to 320 °C and is amenable to sintering into monolithic, polycrystalline discs at 200 °C and about 300 MPa of uniaxial pressure. Impedance spectroscopy measurements reveal ionic conductivities for sintered ammonium borosulfate of 0.1 mS cm-1 at 25 °C and up to 10 mS cm-1 at 180 °C in ambient air. No superprotonic transition is observed in the temperature range of 25-180 °C. Ab initio molecular dynamics simulations show these high conductivities are aided by free rotation of the NH4 + units and significant gyrational mobility of the SO4 tetrahedra, which, in turn, provide facile pathways for proton locomotion. High conductivities, a wide operational temperature window, and tolerance to both ambient and anhydrous conditions make NH4 [B(SO4 )]2 an attractive candidate electrolyte for intermediate-temperature hydrogen fuel cells that may enable operation at temperatures as high as 300 °C without active humidification.

5.
J Am Chem Soc ; 142(42): 17944-17955, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-31961671

ABSTRACT

Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known. In particular, sp3 bonded, diamond-like materials represent appealing targets because of their desirable mechanical, thermal, and optical properties. While many covalent organic frameworks (COFs)-extended, covalently bonded, and porous structures-have been realized through molecular architecture with exceptional control, the design and synthesis of dense, covalent extended solids has been a longstanding challenge. Here we report the preparation of a sp3-bonded, low-dimensional hydrocarbon synthesized via high-pressure, solid-state diradical polymerization of cubane (C8H8), which is a saturated, but immensely strained, cage-like molecule. Experimental measurements show that the obtained product is crystalline with three-dimensional order that appears to largely preserve the basic structural topology of the cubane molecular precursor and exhibits high hardness (comparable to fused quartz) and thermal stability up to 300 °C. Among the plausible theoretical candidate structures, one-dimensional carbon scaffolds comprising six- and four-membered rings that pack within a pseudosquare lattice provide the best agreement with experimental data. These diamond-like molecular rods with extraordinarily small thickness are among the smallest members in the carbon nanothread family, and calculations indicate one of the stiffest one-dimensional systems known. These results present opportunities for the synthesis of purely sp3-bonded extended solids formed through the strain release of saturated molecules, as opposed to only unsaturated precursors.

6.
Sci Adv ; 6(2): eaay8361, 2020 01.
Article in English | MEDLINE | ID: mdl-31950087

ABSTRACT

Carbon-based frameworks composed of sp3 bonding represent a class of extremely lightweight strong materials, but only diamond and a handful of other compounds exist despite numerous predictions. Thus, there remains a large gap between the number of plausible structures predicted and those synthesized. We used a chemical design principle based on boron substitution to predict and synthesize a three-dimensional carbon-boron framework in a host/guest clathrate structure. The clathrate, with composition 2Sr@B6C6, exhibits the cubic bipartite sodalite structure (type VII clathrate) composed of sp3-bonded truncated octahedral C12B12 host cages that trap Sr2+ guest cations. The clathrate not only maintains the robust nature of diamond-like sp3 bonding but also offers potential for a broad range of compounds with tunable properties through substitution of guest atoms within the cages.

7.
Photochem Photobiol Sci ; 18(6): 1526-1532, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30984955

ABSTRACT

The large standard reduction potential of an aqueous solvated electron (eaq-, E° = -2.9 V) makes it an attractive candidate for reductive treatment of wastewater contaminants. Using transient absorption spectroscopy, the nanosecond to microsecond dynamics of eaq- generated from 10 mM solutions of Na2SO3 at pH 4 to 11 in H2O and D2O are characterized, resulting in the determination that between pH 4 and 9 it is the HSO3-, and not H+ as previously postulated by others, that effectively quenches eaq-. The observed bimolecular quenching rate constant (k = 1.2 × 108 M-1 s-1) for eaq- deactivation by HSO3- is found to be consistent with a Brønsted acid catalysis mechanism resulting in formation of H˙ and SO32-. A large solvent isotope effect is observed from the lifetimes of the eaq- in H2O compared to D2O (kH2O/kD2O = 4.4). In addition, the bimolecular rate constant for eaq- deactivation by DSO3- (k = 2.7 × 107 M-1 s-1) is found to be an order of magnitude lower than by HSO3-. These results highlight the role of acids, such as HSO3-, in competition with organic contaminant targets for eaq- and, by extension, that knowledge of the pKa of eaq- sources can be a predictive measure of the effective pH range for the treatment of wastewater contaminants.

8.
J Phys Chem Lett ; 9(8): 2031-2037, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29561621

ABSTRACT

The chemical stability of solid cubane under high-pressure was examined with in situ Raman spectroscopy and synchrotron powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) up to 60 GPa. The Raman modes associated with solid cubane were assigned by comparing experimental data with calculations based on density functional perturbation theory, and low-frequency lattice modes are reported for the first time. The equation of state of solid cubane derived from the PXRD measurements taken during compression gives a bulk modulus of 14.5(2) GPa. In contrast with previous work and chemical intuition, PXRD and Raman data indicate that solid cubane exhibits anomalously large stability under extreme pressure, despite its immensely strained 90° C-C-C bond angles.

9.
J Phys Chem A ; 122(11): 2858-2863, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29432685

ABSTRACT

Tetracyanomethane, C(CN)4, is a tetrahedral molecule containing a central sp3 carbon that is coordinated by reactive nitrile groups that could potentially transform to an extended CN network with a significant fraction of sp3 carbon. High-purity C(CN)4 was synthesized, and its physiochemical behavior was studied using in situ synchrotron angle-dispersive powder X-ray diffraction (PXRD) and Raman and infrared (IR) spectroscopies in a diamond anvil cell (DAC) up to 21 GPa. The pressure dependence of the fundamental vibrational modes associated with the molecular solid was determined, and some low-frequency Raman modes are reported for the first time. Crystalline molecular C(CN)4 starts to polymerize above ∼7 GPa and transforms into an interconnected disordered network, which is recoverable to ambient conditions. The results demonstrate feasibility for the pressure-induced polymerization of molecules with premeditated functionality.

10.
J Chem Phys ; 146(23): 234506, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28641439

ABSTRACT

A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

11.
J Phys Chem A ; 120(47): 9370-9377, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27792350

ABSTRACT

The high-pressure behavior of lithium dicyanamide (LiN(CN)2) was studied with in situ Raman and infrared (IR) spectroscopies, and synchrotron angle-dispersive powder X-ray diffraction (PXRD) in a diamond anvil cell (DAC) to 22 GPa. The fundamental vibrational modes associated with molecular units were assigned using a combination of experimental data and density functional perturbation theory. Some low-frequency modes were observed for the first time. On the basis of spectroscopic and diffraction data, we suggest a polymorphic phase transformation at ∼8 GPa, wherein dicyanamide ions remain as discrete molecular species. Above ca. 18 GPa, dicyanamide units polymerize, forming a largely disordered network, and the extent of polymerization may be increased by annealing at elevated temperature. The polymerized product consists of tricyanomelaminate-like groups containing sp2-hybidized carbon-nitrogen bonds and exhibits a visible absorption edge near 540 nm. The product is recoverable to ambient conditions but is not stable in air/moisture.

12.
J Chem Phys ; 142(19): 194503, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26001465

ABSTRACT

Motivated to explore the formation of novel extended carbon-nitrogen solids via well-defined molecular precursor pathways, we studied the chemical reactivity of highly pure phosphorous tricyanide, P(CN)3, under conditions of high pressure at room temperature. Raman and infrared (IR) spectroscopic measurements reveal a series of phase transformations below 10 GPa, and several low-frequency vibrational modes are reported for the first time. Synchrotron powder X-ray diffraction measurements taken during compression show that molecular P(CN)3 is highly compressible, with a bulk modulus of 10.0 ± 0.3 GPa, and polymerizes into an amorphous solid above ∼10.0 GPa. Raman and IR spectra, together with first-principles molecular-dynamics simulations, show that the amorphization transition is associated with polymerization of the cyanide groups into CN bonds with predominantly sp(2) character, similar to known carbon nitrides, resulting in a novel phosphorous carbon nitride (PCN) polymeric phase, which is recoverable to ambient pressure.

14.
J Am Chem Soc ; 128(50): 16052-3, 2006 Dec 20.
Article in English | MEDLINE | ID: mdl-17165755

ABSTRACT

The synthesis and solid-state structural characterization of a family of homoleptic and mixed dialkyl d1Ta(IV) complexes of the formula, (eta5-C5Me5)TaR1R2[N(i-Pr)C(Me)N(i-Pr)], where R1 = R2 = i-Bu (3), n-Bu (4), and Et (7), and R1 = Me, R2 = i-Bu (10), neopentyl (Np) (11), are reported, along with those for the cationic d1Ta(IV) complex, {(eta5-C5Me5)TaNp[N(i-Pr)C(Me)N(i-Pr)]}[B(C6F5)4] (12). All of the new compounds displayed a remarkably high degree of solution stability toward beta-hydrogen and beta-methyl eliminations/abstractions. Thermolysis of 3 in toluene at 80 degrees C for 18 h provided the Ta(IV) trimethylenemethane (TMM) complex 13.

SELECTION OF CITATIONS
SEARCH DETAIL
...