Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 300: 113735, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34521005

ABSTRACT

Concrete structures of anaerobic digestion plants face chemically aggressive conditions due to the contact with the complex liquid fraction of the fermenting biowaste. This paper aims to determine the biogeochemical dynamic interaction phenomena at play between the biowaste and cementitious matrices at the local scale, and to identify durable binders in such environments. Binder materials likely to show increased durability - slag and calcium aluminate cement, and a metakaolin-based alkali-activated geopolymer - and a reference Portland cement were inserted into sealed bioeactors during 5 cycles (245 days) of broken maize anaerobic digestion. Cementitious pastes suffered chemical and mineralogical alteration related mainly to carbonation and leaching. However, they had no negative impact on the bioprocess in terms of pH, metabolic evolution of volatile fatty acids and NH4+, planktonic microbial community composition or CH4 production. In all reactors, the microbial community was able to perform the anaerobic digestion successfully. The MKAA was only slightly altered in its outermost layer. Its presence in the biowaste induced lower NH4+ concentrations, a slightly higher pH and a marked shift in the microbial community, but CH4 total production was not affected. Substantial enrichment of acid forming bacteria, especially members of the genus Clostridium, was observed in the biofilm formed on all materials.


Subject(s)
Fatty Acids, Volatile , Zea mays , Anaerobiosis , Bacteria , Construction Materials
2.
ChemSusChem ; 14(11): 2267, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34002490

ABSTRACT

Invited for this month's cover is the collaborative work among Univ. of Milano-Bicocca, Ricerca sul Sistema Energetico S.p.A., Univ. degli Studi di Milano, Univ. of California Irvine, Univ. of New Mexico, CNRS Toulouse. Technische Univ. Braunschweig, Aquacycl LLC, J. Craig Venter Institute, Helmholtz-Centre for Environmental Research. The image shows a sketch of a microbial fuel cell and a target indicating the need of developing common standards for the field of microbial electrochemical technologies. The Full Paper itself is available at 10.1002/cssc.202100294.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrochemical Techniques/methods , Laboratories , Research
3.
Biofilm ; 3: 100048, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33997766

ABSTRACT

Electrotaxis is the property of cells to sense electric fields and use them to orient their displacement. This property has been widely investigated with eukaryotic cells but it remains unclear whether or not bacterial cells can sense an electric field. Here, a specific experimental set-up was designed to form microbial electroactive biofilms while differentiating the effect of the electric field from that of the polarised electrode surface. Application of an electric field during exposure of the electrodes to the inoculum was shown to be required for an electroactive biofilm to form afterwards. Similar biofilms were formed in both directions of the electric field. This result is attributed to the capacity of the cells to detect the K+ and Na+ ion gradients that the electric field creates at the electrode surface. This microbial property should now be considered as a key factor in the formation of electroactive biofilms and possible implications in the biomedical domain are discussed.

4.
ChemSusChem ; 14(11): 2313-2330, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-33755321

ABSTRACT

A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 µW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.


Subject(s)
Bioelectric Energy Sources/microbiology , Electrochemical Techniques/methods , Bacteria/metabolism , Carbonates/chemistry , Electricity , Geography , Wastewater/chemistry
5.
iScience ; 24(3): 102162, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33665578

ABSTRACT

Acid and electrochemical surface treatments of graphite electrode, used individually or in combination, significantly improved the microbial anode current production, by +17% to +56%, in well-regulated and duplicated electroanalytical experimental systems. Of all the consequences induced by surface treatments, the modifications of the surface nano-topography preferentially justify an improvement in the fixation of bacteria, and an increase of the specific surface area and the electrochemically accessible surface of graphite electrodes, which are at the origin of the higher performances of the bioanodes supplied with domestic wastewater. The evolution of the chemical composition and the appearance of C-O, C=O, and O=C-O groups on the graphite surface created by combining acid and electrochemical treatments was prejudicial to the formation of efficient domestic-wastewater-oxidizing bioanodes. The comparative discussion, focused on the positioning of the performances, shows the industrial interest of applying the surface treatment method to the world of bioelectrochemical systems.

6.
Bioresour Technol ; 326: 124663, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33529981

ABSTRACT

Microbial electrodes were designed in domestic wastewaters to catalyse the oxidation of organic matter (anode) and the reduction of oxygen (cathode) alternately. The successive aeration phases (cathode) enhanced the anodic efficiency, resulting in current densities of up to 6.4 Am-2 without the addition of any substrate. Using nitrogen during the anodic phases affected the microbial populations and the electrodes showed a lower ability to subsequently turn to O2 reduction than the microbial anodes formed in open-to-air conditions did. No strong difference was observed between internal and external biofilm, both of which showed a very large variety of taxa in terms of abundance as well as variance. They comprised a mix of aerobic and anaerobic species, many of which have already been identified separately in bioelectrochemical systems. Such a large diversity, which had not been observed in aerobic bidirectional bioelectrodes so far, can explain the efficiency and robustness observed here.


Subject(s)
Bioelectric Energy Sources , Wastewater , Biofilms , Electrodes , Oxygen
7.
J Environ Manage ; 280: 111859, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33352382

ABSTRACT

This study assesses bacterial denitrification at alkaline pH, up to 12, and high nitrate concentration, up to 400 mM. Two types of electron donors organic (acetate) and inorganic (dihydrogen) were compared. With both types of electron donors, nitrite reduction was the key step, likely to increase the pH and lead to nitrite accumulation. Firstly, an acclimation process was used: nitrate was progressively increased in three cultures set at pH 9, 10, or 11. This method allowed to observe for the first time nitrate reduction up to pH 10 and 100 mM nitrate with dihydrogen, or up to pH 10 and 400 mM nitrate with acetate. Nitrate reduction kinetics were faster in the presence of acetate. To investigate further the impact of the type of electron donor, a transition from acetate to dihydrogen was tested, and the pH evolution was modelled. Denitrification with dihydrogen strongly increases the pH while with acetate the pH evolution depends on the initial pH. The main difference is the production of acidifying CO2 during the acetate oxidation. Finally, the use of long duration cultures with a highly alkaline pH allowed a nitrate reduction up to pH 11.5 with acetate. However, no reduction was possible in hydrogenotrophy as it would have increased the pH further. Instead, bacteria used organic matter from inoculum to reduce nitrate at pH 11.5. Therefore, considering bacterial denitrification in a context of alkaline pH and high nitrate concentration an organic electron donor such as acetate is advantageous.


Subject(s)
Nitrates , Nitrites , Acetates , Bacteria/genetics , Bioreactors , Denitrification , Electrons , Hydrogen-Ion Concentration , Oxidation-Reduction
8.
Microorganisms ; 8(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238493

ABSTRACT

It is the ambition of many researchers to finally be able to close in on the fundamental, coupled phenomena that occur during the formation and expression of electrocatalytic activity in electroactive biofilms. It is because of this desire to understand that bioelectrochemical systems (BESs) have been miniaturized into microBES by taking advantage of the worldwide development of microfluidics. Microfluidics tools applied to bioelectrochemistry permit even more fundamental studies of interactions and coupled phenomena occurring at the microscale, thanks, in particular, to the concomitant combination of electroanalysis, spectroscopic analytical techniques and real-time microscopy that is now possible. The analytical microsystem is therefore much better suited to the monitoring, not only of electroactive biofilm formation but also of the expression and disentangling of extracellular electron transfer (EET) catalytic mechanisms. This article reviews the details of the configurations of microfluidic BESs designed for selected objectives and their microfabrication techniques. Because the aim is to manipulate microvolumes and due to the high modularity of the experimental systems, the interfacial conditions between electrodes and electrolytes are perfectly controlled in terms of physicochemistry (pH, nutrients, chemical effectors, etc.) and hydrodynamics (shear, material transport, etc.). Most of the theoretical advances have been obtained thanks to work carried out using models of electroactive bacteria monocultures, mainly to simplify biological investigation systems. However, a huge virgin field of investigation still remains to be explored by taking advantage of the capacities of microfluidic BESs regarding the complexity and interactions of mixed electroactive biofilms.

9.
Environ Sci Pollut Res Int ; 27(17): 22112-22119, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32285397

ABSTRACT

Bacterial denitrification is widely documented at neutral pH in order to improve the removal of nitrate in wastewater treatment processes. However, certain industrial contexts generate alkaline waste and effluent containing nitrate that must be denitrified. To obtain more information on denitrification at alkaline pH, this study evaluated the possibility of adapting a neutrophilic denitrifying strain, Paracoccus denitrificans, to alkaline pH. Firstly, P. denitrificans' denitrifying activity was evaluated without acclimation in batch bioreactors at pH 7.0, 8.0, 9.0 and 10.0. Then, two acclimation methods using successive batch bioreactors and a continuous bioreactor allowed P. denitrificans to be gradually exposed to alkaline pH: from 8.5 to 11.2 in 26 and 72 days respectively. Results showed that P. denitrificans could grow and catalyse nitrate reduction (i) at pH 9.0 without acclimation, (ii) at pH 10.5 in successive batch cultures with progressively increasing pH and (iii) at pH 10.8 in continuously fed culture with a hydraulic retention time (HRT) of 8 days. It was shown that denitrification affected the pH despite the presence of carbonate buffering of the P. denitrificans growth medium. With acetate as an electron donor, the pH of a carbonate buffered medium tends towards pH 10 during the process of denitrification. Graphical abstract.


Subject(s)
Paracoccus denitrificans , Acclimatization , Bioreactors , Denitrification , Hydrogen-Ion Concentration , Nitrates
10.
Front Bioeng Biotechnol ; 8: 609446, 2020.
Article in English | MEDLINE | ID: mdl-33392172

ABSTRACT

The textile and clothing industry is the first manufacture sector in Tunisia in terms of employment and number of enterprises. It generates large volumes of textile dyeing wastewater (TDWW) containing high concentrations of saline, alkaline, and recalcitrant pollutants that could fuel tenacious and resilient electrochemically active microorganisms in bioanodes of bioelectrochemical systems. In this study, a designed hybrid bacterial halothermotolerant bioanode incorporating indigenous and exogenous bacteria from both hypersaline sediment of Chott El Djerid (HSCE) and TDWW is proposed for simultaneous treatment of real TDWW and anodic current generation under high salinity. For the proposed halothermotolerant bioanodes, electrical current production, chemical oxygen demand (COD) removal efficiency, and bacterial community dynamics were monitored. All the experiments of halothermotolerant bioanode formation have been conducted on 6 cm2 carbon felt electrodes polarized at -0.1 V/SCE and inoculated with 80% of TDWW and 20% of HSCE for 17 days at 45°C. A reproducible current production of about 12.5 ± 0.2 A/m2 and a total of 91 ± 3% of COD removal efficiency were experimentally validated. Metagenomic analysis demonstrated significant differences in bacterial diversity mainly at species level between anodic biofilms incorporating allochthonous and autochthonous bacteria and anodic biofilm containing only autochthonous bacteria as a control. Therefore, we concluded that these results provide for the first time a new noteworthy alternative for achieving treatment and recover energy, in the form of a high electric current, from real saline TDWW.

11.
Environ Technol ; 41(19): 2439-2449, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30624151

ABSTRACT

Understanding the interactions between biofilm and cementitious materials in biogas production systems is an essential step toward the development of durable concrete for this expanding sector. Although the action of the liquid phase medium on the material has been the subject of several research studies, the possible impact of the material's properties on biofilm formation and composition has been little investigated, if at all. The aim of this paper is to evaluate the characteristics of the biofilm according to the surface properties of the materials. Four cementitious materials with different chemical and mineralogical compositions, and various topological surface characteristics (pastes of CEM I, CEM III/C and CAC, and CEM I paste treated with oxalic acid) were exposed to the liquid phase of a fermenting biowaste for 10 weeks. The steps of biofilm formation were observed using SEM. Even though all the cementitious material surfaces were intensely colonized at the end of the experiments, the establishment of the biofilm seems to have been delayed on the oxalate-treated CEM I and on CAC coupons. Roughness and surface pH effects were not of prime importance for the biofilm development. The analysis of bacterial population diversity using 16S rDNA sequencing showed a less diversified microbial flora in the biofilm than in the reaction medium.


Subject(s)
Biofilms , Biofuels , Cell Proliferation , Surface Properties
12.
Int J Mol Sci ; 20(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635215

ABSTRACT

Bacterial respiration of nitrate is a natural process of nitrate reduction, which has been industrialized to treat anthropic nitrate pollution. This process, also known as "microbial denitrification", is widely documented from the fundamental and engineering points of view for the enhancement of the removal of nitrate in wastewater. For this purpose, experiments are generally conducted with heterotrophic microbial metabolism, neutral pH and moderate nitrate concentrations (<50 mM). The present review focuses on a different approach as it aims to understand the effects of hydrogenotrophy, alkaline pH and high nitrate concentration on microbial denitrification. Hydrogen has a high energy content but its low solubility, 0.74 mM (1 atm, 30 °C), in aqueous medium limits its bioavailability, putting it at a kinetic disadvantage compared to more soluble organic compounds. For most bacteria, the optimal pH varies between 7.5 and 9.5. Outside this range, denitrification is slowed down and nitrite (NO2-) accumulates. Some alkaliphilic bacteria are able to express denitrifying activity at pH levels close to 12 thanks to specific adaptation and resistance mechanisms detailed in this manuscript, and some bacterial populations support nitrate concentrations in the range of several hundred mM to 1 M. A high concentration of nitrate generally leads to an accumulation of nitrite. Nitrite accumulation can inhibit bacterial activity and may be a cause of cell death.


Subject(s)
Alkalies/chemistry , Denitrification , Electrons , Hydrogen-Ion Concentration , Hydrogen/chemistry , Nitrates/chemistry , Algorithms , Metabolic Networks and Pathways , Models, Chemical
13.
Bioresour Technol ; 289: 121641, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31300306

ABSTRACT

Microbial anodes are the cornerstone of most electro-microbial processes. Designing 3-dimensional porous electrodes to increase the surface area of the electroactive biofilm they support is a key challenge in order to boost their performance. In this context, the critical review presented here aims to assess whether an optimal range of pore size may exist for the design of microbial anodes. Pore sizes of a few micrometres can enable microbial cells to penetrate but in conditions that do not favour efficient development of electroactive biofilms. Pores of a few tens of micrometres are subject to clogging. Sizes of a few hundreds of micrometres allow penetration of the biofilm inside the structure, but its development is limited by internal acidification. Consequently, pore sizes of a millimetre or so appear to be the most suitable. In addition, a simple theoretical approach is described to establish basis for porous microbial anode design.


Subject(s)
Bioelectric Energy Sources , Biofilms , Electrodes , Porosity
14.
Bioelectrochemistry ; 129: 179-188, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31195329

ABSTRACT

The main objective of this study was to understand the interaction between salinity, temperature and inoculum size and how it could lead to the formation of efficient halothermotolerant bioanodes from the Hypersaline Sediment of Chott El Djerid (HSCE). Sixteen experiments on bioanode formation were designed using a Box-Behnken matrix and response surface methodology to understand synchronous interactions. All bioanode formations were conducted on 6 cm2 carbon felt electrodes polarized at -0.1 V/SCE and fed with lactate (5 g/L) at pH 7.0. Optimum levels for salinity, temperature and inoculum size were predicted by NemrodW software as 165 g/L, 45 °C and 20%, respectively, under which conditions maximum current production of 6.98 ±â€¯0.06 A/m2 was experimentally validated. Metagenomic analysis of selected biofilms indicated a relative abundance of the two phyla Proteobacteria (from 85.96 to 89.47%) and Firmicutes (from 61.90 to 68.27%). At species level, enrichment of Psychrobacter aquaticus, Halanaerobium praevalens, Psychrobacter alimentaris, and Marinobacter hydrocarbonoclasticus on carbon-based electrodes was correlated with high current production, high salinity and high temperature. Members of the halothermophilic bacteria pool from HSCE, individually or in consortia, are candidates for designing halothermotolerant bioanodes applicable in the bioelectrochemical treatment of industrial wastewater at high salinity and temperature.


Subject(s)
Bioelectric Energy Sources/microbiology , Firmicutes/physiology , Proteobacteria/physiology , Biofilms , Electrodes/microbiology , Equipment Design , Firmicutes/genetics , Firmicutes/isolation & purification , Genomics , Proteobacteria/genetics , Proteobacteria/isolation & purification , Salinity , Temperature
15.
Electrochim Acta ; 277: 127-135, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29970929

ABSTRACT

In this work, a platinum group metal-free (PGM-free) catalyst based on iron as transitional metal and Nicarbazin (NCB) as low cost organic precursor was synthesized using Sacrificial Support Method (SSM). The catalyst was then incorporated into a large area air-breathing cathode fabricated by pressing with a large diameter pellet die. The electrochemical tests in abiotic conditions revealed that after a couple of weeks of successful operation, the electrode experienced drop in performances in reason of electrolyte leakage, which was not an issue with the smaller electrodes. A decrease in the hydrophobic properties over time and a consequent cathode flooding was suspected to be the cause. On the other side, in the present work, for the first time, it was demonstrated the proof of principle and provided initial guidance for manufacturing MFC electrodes with large geometric areas. The tests in MFCs showed a maximum power density of 1.85 W m-2. The MFCs performances due to the addition of Fe-NCB were much higher compared to the iron-free material. A numerical model using Nernst-Monod and Butler-Volmer equations were used to predict the effect of electrolyte solution conductivity and distance anode-cathode on the overall MFC power output. Considering the existing conditions, the higher overall power predicted was 3.6 mW at 22.2 S m-1 and at inter-electrode distance of 1 cm.

16.
J Power Sources ; 356: 225-244, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28717261

ABSTRACT

In the past 10-15 years, the microbial fuel cell (MFC) technology has captured the attention of the scientific community for the possibility of transforming organic waste directly into electricity through microbially catalyzed anodic, and microbial/enzymatic/abiotic cathodic electrochemical reactions. In this review, several aspects of the technology are considered. Firstly, a brief history of abiotic to biological fuel cells and subsequently, microbial fuel cells is presented. Secondly, the development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells. The focus is then shifted to electroactive biofilms and electron transfer mechanisms involved with solid electrodes. Carbonaceous and metallic anode materials are then introduced, followed by an explanation of the electro catalysis of the oxygen reduction reaction and its behavior in neutral media, from recent studies. Cathode catalysts based on carbonaceous, platinum-group metal and platinum-group-metal-free materials are presented, along with membrane materials with a view to future directions. Finally, microbial fuel cell practical implementation, through the utilization of energy output for practical applications, is described.

17.
Bioelectrochemistry ; 116: 24-32, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28364576

ABSTRACT

Six biocathodes catalyzing oxygen reduction were designed from the same environmental inoculum but using three different methods. Two were formed freely at open circuit potential, two using conventional aerobic polarization at -0.2V/SCE and two by reversion of already established acetate-fed bioanodes. Observation of the biofilms by SEM and epifluorescence microscopy revealed that reversible bioelectrodes had the densest biofilms. Electrochemical characterization revealed two different redox systems for oxygen reduction, at -0.30 and +0.23V/SCE. The biocathodes formed under aerobic polarization gave higher electrocalatytic performance for O2 reduction, due to production of the redox systems at +0.23V/SCE. Analyses of the bacterial communities on the biocathodes by 16S-rRNA pyrosequencing showed different selection (or enrichment) of microorganisms depending on the method used. This study highlights how the method chosen for designing oxygen biocathodes can affect the cathode coverage, the selection of bacterial populations and the electrochemical performance.


Subject(s)
Bacteria/metabolism , Bioelectric Energy Sources/microbiology , Biomass , Oxygen/metabolism , Aerobiosis , Biofilms , Electrochemistry , Electrodes , Kinetics , Oxidation-Reduction
18.
Bioelectrochemistry ; 110: 46-51, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27035588

ABSTRACT

Oxygen reducing biocathodes were formed at -0.2V/SCE (+0.04V/SHE) from compost leachate. Depending on whether aeration was implemented or not, two different redox systems responsible for the electrocatalysis of oxygen reduction were evidenced. System I was observed at low potential (-0.03V/SHE) on cyclic voltammetries (CVs). It appeared during the early formation of the biocathode (few hours) and resisted the hydrodynamic conditions induced by the aeration. System II was observed at higher potential on CV (+0.46V/SHE); it required a longer lag time (up to 10days) and quiescent conditions to produce an electrochemical signal. The hydrodynamic effects produced by the forced aeration led to its extinction. From their different behaviors and examples in the literature, system I was identified as being a membrane-bound cytochrome-related molecule, while system II was identified as a soluble redox mediator excreted by the biofilm. This study highlighted the importance of controlling the local hydrodynamics to design efficient oxygen reducing biocathodes able to operate at high potential.


Subject(s)
Air , Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Biofilms , Electrochemistry , Electrodes , Electron Transport , Nitrogen/chemistry , Oxygen/chemistry
19.
Bioresour Technol ; 214: 55-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27126080

ABSTRACT

Biocathodes polarized at high potential are promising for enhancing Microbial Fuel Cell performances but the microbes and genes involved remain poorly documented. Here, two sets of five oxygen-reducing biocathodes were formed at two potentials (-0.4V and +0.1V vs. saturated calomel electrode) and analyzed combining electrochemical and metagenomic approaches. Slower start-up but higher current densities were observed at high potential and a distinctive peak increasing over time was recorded on cyclic voltamogramms, suggesting the growth of oxygen reducing microbes. 16S pyrotag sequencing showed the enrichment of two operational taxonomic units (OTUs) affiliated to Ectothiorodospiraceae on high potential electrodes with the best performances. Shotgun metagenome sequencing and a newly developed method for the identification of Taxon Specific Gene Annotations (TSGA) revealed Ectothiorhodospiraceae specific genes possibly involved in electron transfer and in autotrophic growth. These results give interesting insights into the genetic features underlying the selection of efficient oxygen reducing microbes on biocathodes.


Subject(s)
Biofilms , Ectothiorhodospiraceae/genetics , Oxygen/chemistry , Bioelectric Energy Sources , Ectothiorhodospiraceae/growth & development , Electrochemical Techniques , Electrodes , Molecular Sequence Annotation , Molecular Typing , Oxidation-Reduction , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
20.
Bioelectrochemistry ; 108: 1-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26544631

ABSTRACT

The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 µA cm(-2) day(-1). The rate of decrease slowed to ~10 µA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 µA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme.


Subject(s)
Air , Bioelectric Energy Sources/microbiology , Environmental Pollutants/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Buffers , Electric Conductivity , Electrochemistry , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hypocreales/enzymology , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Oxygen/metabolism , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...