Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res Commun ; 3(5): 780-792, 2023 05.
Article in English | MEDLINE | ID: mdl-37377893

ABSTRACT

The TGFß signaling mediator SMAD4 is frequently mutated or deleted in colorectal and pancreatic cancers. SMAD4 acts as a tumor suppressor and its loss is associated with poorer patient outcomes. The purpose of this study was to find synthetic lethal interactions with SMAD4 deficiency to find novel therapeutic strategies for the treatment of patients with SMAD4-deficient colorectal or pancreatic cancers. Using pooled lentiviral single-guide RNA libraries, we conducted genome-wide loss-of-function screens in Cas9-expressing colorectal and pancreatic cancer cells harboring altered or wild-type SMAD4. The small GTPase protein RAB10 was identified and validated as a susceptibility gene in SMAD4-altered colorectal and pancreatic cancer cells. Rescue assays showed that RAB10 reintroduction reversed the antiproliferative effects of RAB10 knockout in SMAD4-negative cell lines. Further investigation is necessary to shed light on the mechanism by which RAB10 inhibition decreases cell proliferation of SMAD4-negative cells. Significance: This study identified and validated RAB10 as new synthetic lethal gene with SMAD4. This was achieved by conducting a whole-genome CRISPR screens in different colorectal and pancreatic cell lines. A future RAB10 inhibitors could correspond to a new therapeutic solution for patients with cancer with SMAD4 deletion.


Subject(s)
Colorectal Neoplasms , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Genes, Lethal , Pancreatic Neoplasms/genetics , Colorectal Neoplasms/genetics , Smad4 Protein/genetics , Pancreatic Neoplasms
2.
Nucleic Acids Res ; 49(17): 9906-9925, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34500463

ABSTRACT

Replication-associated single-ended DNA double-strand breaks (seDSBs) are repaired predominantly through RAD51-mediated homologous recombination (HR). Removal of the non-homologous end-joining (NHEJ) factor Ku from resected seDSB ends is crucial for HR. The coordinated actions of MRE11-CtIP nuclease activities orchestrated by ATM define one pathway for Ku eviction. Here, we identify the pre-mRNA splicing protein XAB2 as a factor required for resistance to seDSBs induced by the chemotherapeutic alkylator temozolomide. Moreover, we show that XAB2 prevents Ku retention and abortive HR at seDSBs induced by temozolomide and camptothecin, via a pathway that operates in parallel to the ATM-CtIP-MRE11 axis. Although XAB2 depletion preserved RAD51 focus formation, the resulting RAD51-ssDNA associations were unproductive, leading to increased NHEJ engagement in S/G2 and genetic instability. Overexpression of RAD51 or RAD52 rescued the XAB2 defects and XAB2 loss was synthetically lethal with RAD52 inhibition, providing potential perspectives in cancer therapy.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , Ku Autoantigen/metabolism , RNA Splicing Factors/metabolism , Alkylating Agents/adverse effects , Alkylating Agents/pharmacology , Camptothecin/adverse effects , Camptothecin/pharmacology , Cell Line, Tumor , Endodeoxyribonucleases/metabolism , Glioblastoma/drug therapy , Homologous Recombination/genetics , Humans , MRE11 Homologue Protein/metabolism , RNA Interference , RNA Splicing Factors/genetics , RNA, Small Interfering/genetics , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Temozolomide/adverse effects , Temozolomide/pharmacology
3.
Trends Biotechnol ; 37(1): 38-55, 2019 01.
Article in English | MEDLINE | ID: mdl-30177380

ABSTRACT

High-throughput genetic screens interfering with gene expression are invaluable tools to identify gene function and phenotype-to-genotype interactions. Implementing such screens in the laboratory is challenging, and the choice between currently available technologies based on RNAi and CRISPR/Cas9 (CRISPR-associated protein 9) is not trivial. Identifying reliable candidate hits requires a streamlined experimental setup adjusted to the specific biological question. Here, we provide a critical assessment of the various RNAi/CRISPR approaches to pooled screens and discuss their advantages and pitfalls. We specify a set of best practices for key parameters enabling a reproducible screen and provide a detailed overview of analysis methods and repositories for identifying the best candidate gene hits.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knock-In Techniques/methods , Gene Knockdown Techniques/methods , Gene Knockout Techniques/methods , Genetic Association Studies , Genetic Testing/methods , RNA Interference , Computational Biology/methods , High-Throughput Screening Assays
4.
Mutat Res Rev Mutat Res ; 769: 19-35, 2016.
Article in English | MEDLINE | ID: mdl-27543314

ABSTRACT

Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy.


Subject(s)
Brain Neoplasms/genetics , DNA Repair , Glioblastoma/genetics , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , Disease Models, Animal , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Therapy , Glioblastoma/diagnosis , Glioblastoma/metabolism , Glioblastoma/therapy , Humans , Radiotherapy , Signal Transduction
5.
Cancer Res ; 76(2): 390-402, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26577700

ABSTRACT

The introduction of MAPK pathway inhibitors paved the road for significant advancements in the treatment of BRAF-mutant (BRAF(MUT)) melanoma. However, even BRAF/MEK inhibitor combination therapy has failed to offer a curative treatment option, most likely because these pathways constitute a codependent signaling network. Concomitant PTEN loss of function (PTEN(LOF)) occurs in approximately 40% of BRAF(MUT) melanomas. In this study, we sought to identify the nodes of the PTEN/PI3K pathway that would be amenable to combined therapy with MAPK pathway inhibitors for the treatment of PTEN(LOF)/BRAF(MUT) melanoma. Large-scale compound sensitivity profiling revealed that PTEN(LOF) melanoma cell lines were sensitive to PI3Kß inhibitors, albeit only partially. An unbiased shRNA screen (7,500 genes and 20 shRNAs/genes) across 11 cell lines in the presence of a PI3Kß inhibitor identified an adaptive response involving the IGF1R-PI3Kα axis. Combined inhibition of the MAPK pathway, PI3Kß, and PI3Kα or insulin-like growth factor receptor 1 (IGF1R) synergistically sustained pathway blockade, induced apoptosis, and inhibited tumor growth in PTEN(LOF)/BRAF(MUT) melanoma models. Notably, combined treatment with the IGF1R inhibitor, but not the PI3Kα inhibitor, failed to elevate glucose or insulin signaling. Taken together, our findings provide a strong rationale for testing combinations of panPI3K, PI3Kß + IGF1R, and MAPK pathway inhibitors in PTEN(LOF)/BRAF(MUT) melanoma patients to achieve maximal response.


Subject(s)
MAP Kinase Signaling System/genetics , Melanoma/genetics , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins B-raf/genetics , Receptor, IGF Type 1/metabolism , Apoptosis , Cell Death , Cell Proliferation , Humans , Melanoma/pathology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...