Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(4): e11059, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571795

ABSTRACT

The R package popharvest was designed to help assess the sustainability of offtake in birds when only limited demographic information is available. In this article, we describe some basics of harvest theory and then discuss several considerations when using the different approaches in popharvest to assess whether observed harvests are unsustainable. Throughout, we emphasize the importance of distinguishing between the scientific and policy aspects of managing offtake. The principal product of popharvest is a sustainable harvest index (SHI), which can indicate whether the harvest is unsustainable but not the converse. SHI is estimated based on a simple, scalar model of logistic population growth, whose parameters may be estimated using limited knowledge of demography. Uncertainty in demography leads to a distribution of SHI values and it is the purview of the decision-maker to determine what amounts to an acceptable risk when failing to reject the null hypothesis of sustainability. The attitude toward risk, in turn, will likely depend on the decision-maker's objective(s) in managing offtake. The management objective as specified in popharvest is a social construct, informed by biology, but ultimately it is an expression of social values that usually vary among stakeholders. We therefore suggest that any standardization of criteria for management objectives in popharvest will necessarily be subjective and, thus, hard to defend in diverse decision-making situations. Because of its ease of use, diverse functionalities, and a minimal requirement of demographic information, we expect the use of popharvest to become widespread. Nonetheless, we suggest that while popharvest provides a useful platform for rapid assessments of sustainability, it cannot substitute for sufficient expertise and experience in harvest theory and management.

2.
Article in English | MEDLINE | ID: mdl-38409953

ABSTRACT

Hunting has a long tradition in human evolutionary history and remains a common leisure activity or an important source of food. Herein, we first briefly review the literature on the demographic consequences of hunting and associated analytical methods. We then address the question of potential selective hunting and its possible genetic/evolutionary consequences. Birds have historically been popular models for demographic studies, and the huge amount of census and ringing data accumulated over the last century has paved the way for research about the demographic effects of harvesting. By contrast, the literature on the evolutionary consequences of harvesting is dominated by studies on mammals (especially ungulates) and fish. In these taxa, individuals selected for harvest often have particular traits such as large body size or extravagant secondary sexual characters (e.g. antlers, horns, etc.). Our review shows that targeting individuals according to such genetically heritable traits can exert strong selective pressures and alter the evolutionary trajectory of populations for these or correlated traits. Studies focusing on the evolutionary consequences of hunting in birds are extremely rare, likely because birds within populations appear much more similar, and do not display individual differences to the same extent as many mammals and fishes. Nevertheless, even without conscious choice by hunters, there remains the potential for selection through hunting in birds, for example by genetically inherited traits such as personality or pace-of-life. We emphasise that because so many bird species experience high hunting pressure, the possible selective effect of harvest in birds and its evolutionary consequences deserves far more attention, and that hunting may be one major driver of bird evolutionary trajectories that should be carefully considered in wildlife management schemes.

3.
Conserv Biol ; 37(3): e14047, 2023 06.
Article in English | MEDLINE | ID: mdl-36661070

ABSTRACT

Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs' specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.


La conectividad entre hábitats es un objetivo fundamental de las políticas de conservación actuales y con frecuencia se modela con grafos de paisaje (conjuntos de teselas de hábitat [nodos] conectados por vías potenciales de dispersión [enlaces]). Estos grafos se construyen a menudo con opiniones de expertos y modelos de distribución de especies (MDE), por lo que carecen de la validación empírica a partir de datos que reflejan de mejor manera la conectividad funcional. Por consiguiente, analizamos si los grafos de paisaje reflejan cómo la conectividad de hábitats influye sobre el flujo genético, que es uno de los principales procesos evolutivos. Con este propósito, modelamos la red de hábitats de un ave forestal (Setophaga plumbea) en Guadalupe con grafos basados en la opinión de un experto, en el índice de especialización de Jacobs o en un MDE. Usamos datos genéticos (712 aves de 27 poblaciones) para computar los índices genéticos locales y las distancias genéticas entre pares de poblaciones. Por último, analizamos las relaciones entre los índices o distancias genéticas y las distancias de costo o las métricas de conectividad con modelos de distancias de tipo maximum-likelihood-population-effect y correlaciones de Spearman entre las métricas e índices. En general, los grafos de paisaje reflejaron de manera confiable la influencia de la conectividad sobre la estructura genética de las poblaciones; el R2 de validación llegó hasta 0.30 y los coeficientes de correlación llegaron hasta 0.71. Aun así, la relación entre la pertinencia ecológica de los grafos, los requerimientos de datos y los métodos de construcción y análisis no fue directa porque los grafos basados en el método de construcción el más complejo (modelado a partir de la distribución de la especie) a veces tuvieron menos pertinencia ecológica que los otros. Los métodos de validación cruzada y los análisis de sensibilidad nos permitieron hacer espacialmente explícitas las ventajas y limitaciones de cada método de construcción. Así, confirmamos la pertinencia que tienen los grafos de paisaje para la conservación, aunque recomendamos se considere caso por caso el ratio entre la complejidad y la calidad de los métodos de construcción. Esperamos que la replicación de estrategias de validación independiente por varios paisajes y especies fortalezcan la pertinencia ecológica de los modelos de conectividad.


Subject(s)
Conservation of Natural Resources , Passeriformes , Animals , Conservation of Natural Resources/methods , Ecosystem , Forests , Passeriformes/genetics , Gene Flow
4.
Ecol Evol ; 12(9): e9285, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36188522

ABSTRACT

Selective hunting has various impacts that need to be considered for the conservation and management of harvested populations. The consequences of selective harvest have mostly been studied in trophy hunting and fishing, where selection of specific phenotypes is intentional. Recent studies, however, show that selection can also occur unintentionally. With at least 52 million birds harvested each year in Europe, it is particularly relevant to evaluate the selectivity of hunting on this taxon. Here, we considered 211,806 individuals belonging to 7 hunted bird species to study unintentional selectivity in harvest. Using linear mixed models, we compared morphological traits (mass, wing, and tarsus size) and body condition at the time of banding between birds that were subsequently recovered from hunting during the same year as their banding, and birds that were not recovered. We did not find any patterns showing systematic differences between recovery categories, among our model species, for the traits we studied. Moreover, when a difference existed between recovery categories, it was so small that its biological relevance can be challenged. Hunting of birds in Europe therefore does not show any form of strong selectivity on the morphological and physiological traits that we studied and should hence not lead to any change of these traits either by plastic or by evolutionary response.

5.
Mol Ecol ; 31(9): 2730-2751, 2022 05.
Article in English | MEDLINE | ID: mdl-35253301

ABSTRACT

Understanding the frequency, spatiotemporal dynamics and impacts of parasite coinfections is fundamental to developing control measures and predicting disease impacts. The European turtle dove (Streptopelia turtur) is one of Europe's most threatened bird species. High prevalence of infection by the protozoan parasite Trichomonas gallinae has previously been identified, but the role of this and other coinfecting parasites in turtle dove declines remains unclear. Using a high-throughput sequencing approach, we identified seven strains of T. gallinae, including two novel strains, from ITS1/5.8S/ITS2 ribosomal sequences in turtle doves on breeding and wintering grounds, with further intrastrain variation and four novel subtypes revealed by the iron-hydrogenase gene. High spatiotemporal turnover was observed in T. gallinae strain composition, and infection was prevalent in all populations (89%-100%). Coinfection by multiple Trichomonas strains was rarer than expected (1% observed compared to 38.6% expected), suggesting either within-host competition, or high mortality of coinfected individuals. In contrast, coinfection by multiple haemosporidians was common (43%), as was coinfection by haemosporidians and T. gallinae (90%), with positive associations between strains of T. gallinae and Leucocytozoon suggesting a mechanism such as parasite-induced immune modulation. We found no evidence for negative associations between coinfections and host body condition. We suggest that longitudinal studies involving the recapture and investigation of infection status of individuals over their lifespan are crucial to understand the epidemiology of coinfections in natural populations.


Subject(s)
Bird Diseases , Coinfection , Haemosporida , Parasites , Trichomonas , Animals , Bird Diseases/epidemiology , Bird Diseases/parasitology , Coinfection/veterinary , Columbidae/parasitology , Trichomonas/genetics
6.
Ecol Evol ; 11(23): 16562-16571, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938457

ABSTRACT

Bird harvest for recreational purposes or as a source for food is an important activity worldwide. Assessing or mitigating the impact of these additional sources of mortality on bird populations is therefore crucial issue. The sustainability of harvest levels is however rarely documented, because knowledge of their population dynamics remains rudimentary for many bird species. Some helpful approaches using limited demographic data can be used to provide initial assessment of the sustainable use of harvested bird populations, and help adjusting harvest levels accordingly. The Demographic Invariant Method (DIM) is used to detect overharvesting. In complement, the Potential Take Level (PTL) approach may allow setting a level of take with regard to management objectives and/or to assess whether current harvest levels meet these objectives. Here, we present the R package popharvest that implements these two approaches in a simple and straightforward way. The package provides users with a set of flexible functions whose arguments can be adapted to existing knowledge about population dynamics. Also, popharvest enables users to test scenarios or propagate uncertainty in demographic parameters to the assessment of sustainability through easily programming Monte Carlo simulations. The simplicity of the package makes it a useful toolbox for wildlife managers or policymakers. This paper provides them with backgrounds about the DIM and PTL approaches and illustrates the use of popharvest's functionalities in this context.

7.
Parasitol Res ; 120(4): 1405-1420, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33521839

ABSTRACT

Diseases can play a role in species decline. Among them, haemosporidian parasites, vector-transmitted protozoan parasites, are known to constitute a risk for different avian species. However, the magnitude of haemosporidian infection in wild columbiform birds, including strongly decreasing European turtle doves, is largely unknown. We examined the prevalence and diversity of haemosporidian parasites Plasmodium, Leucocytozoon and subgenera Haemoproteus and Parahaemoproteus in six species of the order Columbiformes during breeding season and migration by applying nested PCR, one-step multiplex PCR assay and microscopy. We detected infections in 109 of the 259 screened individuals (42%), including 15 distinct haemosporidian mitochondrial cytochrome b lineages, representing five H. (Haemoproteus), two H. (Parahaemoproteus), five Leucocytozoon and three Plasmodium lineages. Five of these lineages have never been described before. We discriminated between single and mixed infections and determined host species-specific prevalence for each parasite genus. Observed differences among sampled host species are discussed with reference to behavioural characteristics, including nesting and migration strategy. Our results support previous suggestions that migratory birds have a higher prevalence and diversity of blood parasites than resident or short-distance migratory species. A phylogenetic reconstruction provided evidence for H. (Haemoproteus) as well as H. (Parahaemoproteus) infections in columbiform birds. Based on microscopic examination, we quantified parasitemia, indicating the probability of negative effects on the host. This study provides a large-scale baseline description of haemosporidian infections of wild birds belonging to the order Columbiformes sampled in the northern hemisphere. The results enable the monitoring of future changes in parasite transmission areas, distribution and diversity associated with global change, posing a potential risk for declining avian species as the European turtle dove.


Subject(s)
Bird Diseases/epidemiology , Columbiformes/parasitology , Haemosporida/genetics , Protozoan Infections, Animal/epidemiology , Animal Migration , Animals , Bird Diseases/parasitology , Columbidae/parasitology , Cytochromes b/genetics , Genetic Variation , Global Warming , Haemosporida/classification , Haemosporida/growth & development , Host Specificity , Mitochondria/genetics , Multiplex Polymerase Chain Reaction/veterinary , Phylogeny , Plasmodium/genetics , Polymerase Chain Reaction/veterinary , Prevalence , Protozoan Infections, Animal/parasitology
8.
PLoS One ; 13(3): e0193935, 2018.
Article in English | MEDLINE | ID: mdl-29518164

ABSTRACT

The Eurasian Collared Dove (Streptopelia decaocto) is one of the most successful biological invaders among terrestrial vertebrates. However, little information is available on the genetic diversity of the species. A total of 134 Eurasian Collared Doves from Europe, Asia and the Caribbean (n = 20) were studied by sequencing a 658-bp length of mitochondrial DNA (mtDNA) cytochrome oxidase I (COI). Fifty-two different haplotypes and relatively high haplotype and nucleotide diversities (Hd±SD = 0.843±0.037 and π±SD = 0.026±0.013) were detected. Haplotype Ht1 was particularly dominant: it included 44.03% of the studied individuals, and contained sequences from 75% of the studied countries. Various analyses (FST, AMOVA, STRUCTURE) distinguished 2 groups on the genetic level, designated 'A' and 'B'. Two groups were also separated in the median-joining network and the maximum likelihood tree. The results of the neutrality tests were negative (Fu FS = -25.914; Tajima D = -2.606) and significantly different from zero (P≤0.001) for group A, whereas both values for group B were positive (Fu FS = 1.811; Tajima D = 0.674) and not significant (P>0.05). Statistically significant positive autocorrelation was revealed among individuals located up to 2000 km apart (r = 0.124; P = 0.001). The present results provide the first information on the genetic diversity and structure of the Eurasian Collared Dove, and can thereby serve as a factual and comparative basis for similar studies in the future.


Subject(s)
Columbidae/genetics , Animal Distribution , Animals , Asia , Caribbean Region , Conserved Sequence , DNA, Mitochondrial , Electron Transport Complex IV/genetics , Europe , Genetic Variation , Haplotypes , Likelihood Functions , Sequence Homology, Nucleic Acid
9.
Mol Ecol ; 26(19): 4906-4919, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28727200

ABSTRACT

Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces.


Subject(s)
Forests , Gene Flow , Genetics, Population , Passeriformes/genetics , Animals , Guadeloupe , Models, Genetic
10.
BMC Evol Biol ; 16(1): 237, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27821052

ABSTRACT

BACKGROUND: Understanding how past climatic oscillations have affected organismic evolution will help predict the impact that current climate change has on living organisms. The European turtle dove, Streptopelia turtur, is a warm-temperature adapted species and a long distance migrant that uses multiple flyways to move between Europe and Africa. Despite being abundant, it is categorized as vulnerable because of a long-term demographic decline. We studied the demographic history and population genetic structure of the European turtle dove using genomic data and mitochondrial DNA sequences from individuals sampled across Europe, and performing paleoclimatic niche modelling simulations. RESULTS: Overall our data suggest that this species is panmictic across Europe, and is not genetically structured across flyways. We found the genetic signatures of demographic fluctuations, inferring an effective population size (Ne) expansion that occurred between the late Pleistocene and early Holocene, followed by a decrease in the Ne that started between the mid Holocene and the present. Our niche modelling analyses suggest that the variations in the Ne are coincident with recent changes in the availability of suitable habitat. CONCLUSIONS: We argue that the European turtle dove is prone to undergo demographic fluctuations, a trait that makes it sensitive to anthropogenic impacts, especially when its numbers are decreasing. Also, considering the lack of genetic structure, we suggest all populations across Europe are equally relevant for conservation.


Subject(s)
Columbidae/genetics , Africa , Animals , Biological Evolution , Climate Change , Columbidae/physiology , DNA, Mitochondrial/genetics , Ecosystem , Europe , Genetic Structures , Genetic Variation , Genetics, Population , Genomics
12.
Mol Ecol ; 25(16): 3831-44, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27314987

ABSTRACT

Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species-specific population structure are rare. Here, we used a comparative approach on eight bird species, co-occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology.


Subject(s)
Birds/genetics , Ecosystem , Evolution, Molecular , Tropical Climate , Animals , Biodiversity , Forests , Genetics, Population , Guadeloupe
13.
Physiol Biochem Zool ; 89(2): 151-60, 2016.
Article in English | MEDLINE | ID: mdl-27082725

ABSTRACT

Migration is an important event in the life cycle of many organisms, but considerable intraspecific variation may occur in its timing and/or destination, resulting in sexual segregation during wintering periods. In this study, we tested the body size hypothesis, or cold tolerance hypothesis, which predicts that body size dimorphism modulates metabolic costs associated with cold climate. Using the Eurasian skylark, we first investigated whether this species showed sexual differential migration. Then we explored the body size hypothesis by experimentally testing the effect of low ambient temperature (Ta) on both metabolic rate (MR) and body temperature (Tb). We tested for sex-related differences in metabolism and in energy-saving mechanism (hypothermia). We found clear differential migration by sex in skylark wintering populations, with a male-biased sex ratio decreasing toward southern latitudes. Measurements on captive birds at 20°, 6°, and -5°C demonstrated a significant increase in MR when Ta decreased, but there is no difference between sexes. While both males and females reduced their Tb overnight, Tb reduction was more pronounced in females exposed to the coldest temperature treatment. In addition, we found that individuals with the most reduced Tb lost less body weight during the night, suggesting that Tb reduction may help minimize energy expenditure when conditions become constraining. Our study suggests that functional mechanisms may be involved in latitudinal segregation between sexes and supports the hypothesis that sex-specific physiological strategies and thermal tolerance may explain segregation between sexes.


Subject(s)
Animal Migration/physiology , Body Temperature/physiology , Cold Temperature , Passeriformes/physiology , Animals , Basal Metabolism/physiology , Body Weight , Female , France , Male , Sex Characteristics
14.
Genetica ; 144(1): 125-38, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26797853

ABSTRACT

Archipelagoes are considered as "natural laboratories" for studying processes that shape the distribution of diversity. The Lesser Antilles provide a favorable geographical context for divergence to occur. However, although morphological subspecies have been described across this archipelago in numerous avian species, the potential for the Lesser Antilles in driving intra-specific genetic divergence in highly mobile organisms such as birds remains understudied. Here, we assessed level of intra-specific genetic diversity and differentiation between three islands of the Lesser Antilles (Guadeloupe, Dominica and Martinique) using a multi-species approach on eight bird species. For each species, we built a set of microsatellite markers from cross-species amplifications. Significant patterns of inter-island and/or within-island genetic differentiation were detected in all species. However, levels of intra-specific genetic differentiation among the eight bird species were not always consistent with the boundaries of subspecies previously described in the sampled islands. These results suggest different histories of colonization/expansion and/or different species-specific ecological traits affecting gene flow, advocating for multi-species studies of historical and contemporary factors shaping the distribution of diversity on islands.


Subject(s)
Birds/genetics , Genetic Speciation , Genetic Variation , Animals , Birds/classification , Dominica , Genetic Loci , Genetics, Population , Guadeloupe , Islands , Martinique , Microsatellite Repeats , Species Specificity
15.
Ecol Evol ; 6(20): 7511-7521, 2016 10.
Article in English | MEDLINE | ID: mdl-28725417

ABSTRACT

The loss of regulating agents such as parasites is among the most important changes in biotic interactions experienced by populations established in newly colonized areas. Under a relaxed parasite pressure, individuals investing less in costly immune mechanisms might experience a selective advantage and become successful colonizers as they re-allocate resources to other fitness-related traits. Accordingly, a refinement of the evolution of increased competitive ability (EICA) hypothesis proposed that immunity of invasive populations has evolved toward a reduced investment in innate immunity, the most costly component of immunity, and an increased humoral immunity that is less costly. Biogeographical approaches comparing populations between native and expansion ranges are particularly relevant in exploring this issue, but remain very scarce. We conducted a biogeographical comparison between populations of Spectacled Thrush (Turdus nudigenis) from the native area (South America) and from the expansion range (Caribbean islands). First, we compared haemosporidian prevalence and circulating haptoglobin (an acute-phase protein produced during inflammation). Second, we challenged captive birds from both ranges with Escherichia coli lipopolysaccharides (LPS) and measured postchallenge haptoglobin production and body mass change. Birds from the expansion range showed lower haemosporidian prevalence and lower levels of haptoglobin than birds from the native range. In addition, the inflammation elicited by LPS injection and its associated cost in terms of body mass loss were lower in birds from the expansion range than in birds from the native range. In accordance with the enemy release hypothesis, our results suggest that range expansion is associated with a reduced infection risk. Our study also supports the hypothesis that individuals from newly established populations have evolved mechanisms to dampen the inflammatory response and are in accordance with one prediction of the refined EICA hypothesis, proposed to understand biological invasions.

16.
PLoS One ; 9(7): e101598, 2014.
Article in English | MEDLINE | ID: mdl-24984028

ABSTRACT

The relationship between intake rate and food density can provide the foundation for models that predict the spatiotemporal distribution of organisms across a range of resource densities. The functional response, describing the relationship between resource density and intake rate is often interpreted mechanistically as the relationships between times spend searching and handling. While several functional response models incorporate anti-predator vigilance (defined here as an interruption of feeding or some other activity to visually scan the environment, directed mainly towards detecting potential predators), the impacts of environmental factors influencing directly anti-predator vigilance remains unclear. We examined the combined effects of different scenarios of predation risk and food density on time allocation between foraging and anti-predator vigilance in a granivorous species. We experimentally exposed Skylarks to various cover heights and seed densities, and measured individual time budget and pecking and intake rates. Our results indicated that time devoted to different activities varied as a function of both seed density and cover height. Foraging time increased with seed density for all cover heights. Conversely, an increased cover height resulted in a decreased foraging time. Contrary to males, the decreased proportion of time spent foraging did not translate into a foraging disadvantage for females. When vegetation height was higher, females maintained similar pecking and intake rates compared to intermediate levels, while males consistently decreased their energy gain. This difference in anti-predator responses suggests a sexually mediated strategy in the food-safety trade-off: when resource density is high a females would adopt a camouflage strategy while an escape strategy would be adopted by males. In other words, males would leave risky-areas, whereas females would stay when resource density is high. Our results suggest that increased predation risk might generate sexually mediated behavioural responses that functional response models should perhaps better consider in the future.


Subject(s)
Birds/physiology , Food Chain , Models, Biological , Animals , Female , Male
17.
PLoS One ; 8(11): e79706, 2013.
Article in English | MEDLINE | ID: mdl-24260286

ABSTRACT

Constitutive humoral immunity (CHI) is thought to be a first-line of protection against pathogens invading vertebrate hosts. However, clear evidence that CHI correlates with host fitness in natural conditions is still lacking. This study explores the relationship between CHI, measured using a haemagglutination-haemolysis assay (HAHL), and resistance to classical swine fever virus (CSFV) among wild boar piglets. The individual dynamics of HAHL during piglet growth was analysed, using 423 serum samples from 92 piglets repeatedly captured in the absence of CSFV (in 2006) within two areas showing contrasting food availability. Natural antibody levels increased with age, but, in the youngest piglets antibody levels were higher in individuals from areas with the highest food availability. Complement activity depended on natural antibody levels and piglets' body condition. In the presence of CSFV (i.e., in 2005 within one area), serum samples from piglets that were repeatedly captured were used to assess whether piglet HAHL levels affected CSFV status at a later capture. The correlation between CHI and resistance to CSFV was tested using 79 HAHL measures from 23 piglets captured during a CSFV outbreak. Both natural antibodies and complement activity levels measured at a given time correlated negatively to the subsequent probability of becoming viremic. Finally, capture-mark-recapture models showed that piglets with medium/high average complement activity, independently of their age, were significantly less at risk of becoming viremic and more likely to develop a specific immune response than piglets with low complement activity. Additionally, piglets with high average complement activity showed the highest survival prospects. This study provides evidence linking CHI to individual fitness within a natural mammal population. The results also highlight the potential of HAHL assays to explore the dynamics and co-evolution between wildlife mammal hosts and blood-borne parasites interacting with the CHI.


Subject(s)
Classical Swine Fever/immunology , Immunity, Innate/immunology , Animals , Classical Swine Fever Virus/immunology , Sus scrofa , Swine
18.
PLoS One ; 8(3): e59396, 2013.
Article in English | MEDLINE | ID: mdl-23544064

ABSTRACT

The identification of migration routes, wintering grounds and stopover sites are crucial issues for the understanding of the Palearctic-African bird migration system as well as for the development of relevant conservation strategies for trans-Saharan migrants. Using miniaturized light-level geolocators we report a comprehensive and detailed year round track of a granivorous trans-Saharan migrant, the European Turtle Dove (Streptopelia turtur). From five recovered loggers, our data provide new insights on migratory journeys and winter destinations of Turtle Doves originating from a breeding population in Western France. Data confirm that Turtle Doves wintered in West Africa. The main wintering area encompassed Western Mali, the Inner Delta Niger and the Malian/Mauritanian border. Some individuals also extended their wintering ranges over North Guinea, North-West of Burkina Faso and the Ivory-Coast. Our results reveal that all individuals did not spend the winter period at a single location; some of them experienced a clear eastward shift of several hundred kilometres. We also found evidence for a loop migration pattern, with a post-breeding migration flyway lying west of the spring route. Finally, we found that on their way back to breeding grounds Turtle Doves needed to refuel after crossing the Sahara desert. Contrary to previous suggestions, our data reveal that birds used stopover sites for several weeks, presumably in Morocco and North Algeria. This later finding is a crucial issue for future conservation strategies because environmental conditions on these staging areas might play a pivotal role in population dynamics of this declining species.


Subject(s)
Animal Migration/physiology , Columbidae/physiology , Geographic Information Systems , Sunlight , Africa, Northern , Animals , Geography , Seasons
19.
Infect Genet Evol ; 11(8): 2043-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21983685

ABSTRACT

Ixodes ricinus is a European tick that transmits numerous pathogenic agents, including the bacteria that cause Lyme disease (some genospecies of Borrelia burgdorferi sensu lato complex). This tick has been considered as a classic example of an extreme generalist vector. However, host-associations in such vector species are difficult to determine from field observations alone and recent work suggests that host specificity may be more frequent in ticks than previously thought. The presence of host-associated vector groups can significantly alter the circulation and evolutionary pathway of associated pathogens. In this paper, we explicitly test for host-associated genetic structure in I. ricinus. We analyzed genetic variability at 11 microsatellite markers in a large sample of ticks collected directly from trapped wild animals (birds, rodents, lizards, wild boar and roe deer) at five sites in Western and Central Europe. We found significant levels of genetic structure both among host individuals and among host types within local populations, suggesting that host use is not random in I. ricinus. These results help explain previous patterns of structure found in off-host tick samples, along with epidemiological observations of Lyme disease.


Subject(s)
Arachnid Vectors/genetics , Arachnid Vectors/microbiology , Borrelia burgdorferi/genetics , Ixodes/genetics , Ixodes/microbiology , Lyme Disease/transmission , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Europe/epidemiology , Genetic Markers , Genotype , Humans , Lyme Disease/epidemiology , Lyme Disease/genetics , Lyme Disease/microbiology , Microsatellite Repeats , Polymorphism, Genetic
20.
Mol Ecol Resour ; 11(6): 1124-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21951598

ABSTRACT

This article documents the addition of 112 microsatellite marker loci and 24 pairs of single nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Agelaius phoeniceus, Austrolittorina cincta, Circus cyaneus, Circus macrourus, Circus pygargus, Cryptocoryne × purpurea Ridl. nothovar. purpurea, Mya arenaria, Patagioenas squamosa, Prochilodus mariae, Scylla serrata and Scytalopus speluncae. These loci were cross-tested on the following species: Cryptocoryne × purpurea nothovar. purpurea, Cryptocoryne affinis, Cryptocoryne ciliata, Cryptocoryne cordata var. cordata, Cryptocoryne elliptica, Cryptocoryne griffithii, Cryptocoryne minima, Cryptocoryne nurii and Cryptocoryne schulzei. This article also documents the addition of 24 sequencing primer pairs and 24 allele-specific primers or probes for Aphis glycines.


Subject(s)
Databases, Genetic , Ecology/methods , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , DNA Primers/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...