Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aerobiologia (Bologna) ; 40(1): 123-127, 2024.
Article in English | MEDLINE | ID: mdl-38766603

ABSTRACT

We present the first implementation of the monitoring of airborne fungal spores in real-time using digital holography. To obtain observations of Alternaria spp. spores representative of their airborne stage, we collected events measured in the air during crop harvesting in a contaminated potato field, using a Swisens Poleno device. The classification algorithm used by MeteoSwiss for operational pollen monitoring was extended by training the system using this additional dataset. The quality of the retrieved concentrations is evaluated by comparison with parallel measurements made with a manual Hirst-type trap. Correlations between the two measurements are high, especially over the main dispersion period of Alternaria spp., demonstrating the potential for automatic real-time monitoring of fungal spores.

2.
Sci Total Environ ; 866: 161220, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36584954

ABSTRACT

To benefit allergy patients and the medical practitioners, pollen information should be available in both a reliable and timely manner; the latter is only recently possible due to automatic monitoring. To evaluate the performance of all currently available automatic instruments, an international intercomparison campaign was jointly organised by the EUMETNET AutoPollen Programme and the ADOPT COST Action in Munich, Germany (March-July 2021). The automatic systems (hardware plus identification algorithms) were compared with manual Hirst-type traps. Measurements were aggregated into 3-hourly or daily values to allow comparison across all devices. We report results for total pollen as well as for Betula, Fraxinus, Poaceae, and Quercus, for all instruments that provided these data. The results for daily averages compared better with Hirst observations than the 3-hourly values. For total pollen, there was a considerable spread among systems, with some reaching R2 > 0.6 (3 h) and R2 > 0.75 (daily) compared with Hirst-type traps, whilst other systems were not suitable to sample total pollen efficiently (R2 < 0.3). For individual pollen types, results similar to the Hirst were frequently shown by a small group of systems. For Betula, almost all systems performed well (R2 > 0.75 for 9 systems for 3-hourly data). Results for Fraxinus and Quercus were not as good for most systems, while for Poaceae (with some exceptions), the performance was weakest. For all pollen types and for most measurement systems, false positive classifications were observed outside of the main pollen season. Different algorithms applied to the same device also showed different results, highlighting the importance of this aspect of the measurement system. Overall, given the 30 % error on daily concentrations that is currently accepted for Hirst-type traps, several automatic systems are currently capable of being used operationally to provide real-time observations at high temporal resolutions. They provide distinct advantages compared to the manual Hirst-type measurements.


Subject(s)
Allergens , Hypersensitivity , Humans , Environmental Monitoring/methods , Pollen , Seasons , Poaceae , Betula
SELECTION OF CITATIONS
SEARCH DETAIL
...