Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Rep ; 11(1): 11645, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34079032

ABSTRACT

Hereditary transthyretin-mediated (hATTR) amyloidosis is an underdiagnosed, progressively debilitating disease caused by mutations in the transthyretin (TTR) gene. V122I, a common pathogenic TTR mutation, is found in 3-4% of individuals of African ancestry in the United States and has been associated with cardiomyopathy and heart failure. To better understand the phenotypic consequences of carrying V122I, we conducted a phenome-wide association study scanning 427 ICD diagnosis codes in UK Biobank participants of African ancestry (n = 6062). Significant associations were tested for replication in the Penn Medicine Biobank (n = 5737) and the Million Veteran Program (n = 82,382). V122I was significantly associated with polyneuropathy in the UK Biobank (odds ratio [OR] = 6.4, 95% confidence interval [CI] 2.6-15.6, p = 4.2 × 10-5), which was replicated in the Penn Medicine Biobank (OR = 1.6, 95% CI 1.2-2.4, p = 6.0 × 10-3) and Million Veteran Program (OR = 1.5, 95% CI 1.2-1.8, p = 1.8 × 10-4). Polyneuropathy prevalence among V122I carriers was 2.1%, 9.0%, and 4.8% in the UK Biobank, Penn Medicine Biobank, and Million Veteran Program, respectively. The cumulative incidence of common hATTR amyloidosis manifestations (carpal tunnel syndrome, polyneuropathy, cardiomyopathy, heart failure) was significantly enriched in V122I carriers compared with non-carriers (HR = 2.8, 95% CI 1.7-4.5, p = 2.6 × 10-5) in the UK Biobank, with 37.4% of V122I carriers having at least one of these manifestations by age 75. Our findings show that V122I carriers are at increased risk of polyneuropathy. These results also emphasize the underdiagnosis of disease in V122I carriers with a significant proportion of subjects showing phenotypic changes consistent with hATTR amyloidosis. Greater understanding of the manifestations associated with V122I is critical for earlier diagnosis and treatment.


Subject(s)
Amyloid Neuropathies, Familial/diagnosis , Cardiomyopathies/diagnosis , Heart Failure/diagnosis , Polyneuropathies/diagnosis , Prealbumin/genetics , Adult , Aged , Amino Acid Substitution , Amyloid Neuropathies, Familial/complications , Amyloid Neuropathies, Familial/ethnology , Amyloid Neuropathies, Familial/genetics , Biological Specimen Banks , Black People , Cardiomyopathies/complications , Cardiomyopathies/ethnology , Cardiomyopathies/genetics , Female , Gene Expression , Heart Failure/complications , Heart Failure/ethnology , Heart Failure/genetics , Heterozygote , Humans , Male , Middle Aged , Mutation , Phenotype , Polyneuropathies/complications , Polyneuropathies/ethnology , Polyneuropathies/genetics , Prevalence , United Kingdom/epidemiology
2.
Clin J Am Soc Nephrol ; 16(7): 1025-1036, 2021 07.
Article in English | MEDLINE | ID: mdl-33985991

ABSTRACT

BACKGROUND AND OBJECTIVES: In the rare disease primary hyperoxaluria type 1, overproduction of oxalate by the liver causes kidney stones, nephrocalcinosis, kidney failure, and systemic oxalosis. Lumasiran, an RNA interference therapeutic, suppresses glycolate oxidase, reducing hepatic oxalate production. The objective of this first-in-human, randomized, placebo-controlled trial was to evaluate the safety, pharmacokinetic, and pharmacodynamic profiles of lumasiran in healthy participants and patients with primary hyperoxaluria type 1. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: This phase 1/2 study was conducted in two parts. In part A, healthy adults randomized 3:1 received a single subcutaneous dose of lumasiran or placebo in ascending dose groups (0.3-6 mg/kg). In part B, patients with primary hyperoxaluria type 1 randomized 3:1 received up to three doses of lumasiran or placebo in cohorts of 1 or 3 mg/kg monthly or 3 mg/kg quarterly. Patients initially assigned to placebo crossed over to lumasiran on day 85. The primary outcome was incidence of adverse events. Secondary outcomes included pharmacokinetic and pharmacodynamic parameters, including measures of oxalate in patients with primary hyperoxaluria type 1. Data were analyzed using descriptive statistics. RESULTS: Thirty-two healthy participants and 20 adult and pediatric patients with primary hyperoxaluria type 1 were enrolled. Lumasiran had an acceptable safety profile, with no serious adverse events or study discontinuations attributed to treatment. In part A, increases in mean plasma glycolate concentration, a measure of target engagement, were observed in healthy participants. In part B, patients with primary hyperoxaluria type 1 had a mean maximal reduction from baseline of 75% across dosing cohorts in 24-hour urinary oxalate excretion. All patients achieved urinary oxalate levels ≤1.5 times the upper limit of normal. CONCLUSIONS: Lumasiran had an acceptable safety profile and reduced urinary oxalate excretion in all patients with primary hyperoxaluria type 1 to near-normal levels. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Study of Lumasiran in Healthy Adults and Patients with Primary Hyperoxaluria Type 1, NCT02706886.


Subject(s)
Hyperoxaluria, Primary/drug therapy , Oxalates/urine , RNA, Small Interfering/pharmacology , RNA, Small Interfering/pharmacokinetics , Renal Agents/pharmacology , Renal Agents/pharmacokinetics , Adolescent , Adult , Child , Female , Glycolates/blood , Humans , Hyperoxaluria, Primary/blood , Hyperoxaluria, Primary/urine , Male , RNA, Small Interfering/adverse effects , Renal Agents/adverse effects , Single-Blind Method , Young Adult
3.
Neurology ; 96(3): e412-e422, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33087494

ABSTRACT

OBJECTIVE: To identify changes in the proteome associated with onset and progression of hereditary transthyretin-mediated (hATTR) amyloidosis, also known as ATTRv amyloidosis, we performed an observational, case-controlled study that compared proteomes of patients with ATTRv amyloidosis and healthy controls. METHODS: Plasma levels of >1,000 proteins were measured in patients with ATTRv amyloidosis with polyneuropathy who received either placebo or patisiran in a Phase 3 study of patisiran (APOLLO), and in healthy controls. The effect of patisiran on the time profile of each protein was determined by linear mixed model at 0, 9, and 18 months. Neurofilament light chain (NfL) was further assessed with an orthogonal quantitative approach. RESULTS: Levels of 66 proteins were significantly changed with patisiran vs placebo, with NfL change most significant (p < 10-20). Analysis of changes in protein levels demonstrated that the proteome of patients treated with patisiran trended toward that of healthy controls at 18 months. Healthy controls' NfL levels were 4-fold lower than in patients with ATTRv amyloidosis with polyneuropathy (16.3 pg/mL vs 69.4 pg/mL, effect -53.1 pg/mL [95% confidence interval -60.5 to -45.9]). NfL levels at 18 months increased with placebo (99.5 pg/mL vs 63.2 pg/mL, effect 36.3 pg/mL [16.5-56.1]) and decreased with patisiran treatment (48.8 pg/mL vs 72.1 pg/mL, effect -23.3 pg/mL [-33.4 to -13.1]) from baseline. At 18 months, improvement in modified Neuropathy Impairment Score +7 score after patisiran treatment significantly correlated with reduced NfL (R = 0.43 [0.29-0.55]). CONCLUSIONS: Findings suggest that NfL may serve as a biomarker of nerve damage and polyneuropathy in ATTRv amyloidosis, enable earlier diagnosis of patients with ATTRv amyloidosis, and facilitate monitoring of disease progression. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that NfL levels may enable earlier diagnosis of polyneuropathy in patients with ATTRv amyloidosis and facilitate monitoring of disease progression.


Subject(s)
Amyloid Neuropathies, Familial/diagnosis , Neurofilament Proteins/blood , Proteome , Aged , Amyloid Neuropathies, Familial/blood , Amyloid Neuropathies, Familial/drug therapy , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , Prognosis , RNA, Small Interfering/therapeutic use
4.
Amyloid ; 27(3): 184-190, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32425064

ABSTRACT

Background: Destabilised transthyretin (TTR) can result in the progressive, fatal disease transthyretin-mediated (ATTR) amyloidosis. A stabilising TTR mutation, T119M, is the basis for a therapeutic strategy to reduce destabilised TTR. Recently, T119M was associated with extended lifespan and lower risk of cerebrovascular disease in a Danish cohort. We aimed to determine whether this finding could be replicated in the UK Biobank.Methods: TTR T119M carriers were identified in the UK Biobank, a large prospective cohort of ∼500,000 individuals. Association between T119M genotype and inpatient diagnosis of vascular disease, cardiovascular disease, cerebrovascular disease, and mortality was analysed.Results: Frequency of T119M within the white UK Biobank population (n = 337,148) was 0.4%. Logistic regression comparing T119M carriers to non-carriers found no association between T119M and vascular disease (odds ratio [OR] = 1.08; p = .27), cardiovascular disease (OR = 1.08; p = .31), cerebrovascular disease (OR = 1.1; p = .42), or death (OR = 1.2; p = .06). Cox proportional hazards regression showed similar results (hazard ratio >1, p>.05). Age at death and vascular disease diagnosis were similar between T119M carriers and non-carriers (p = .12 and p = .38, respectively).Conclusions: There was no association between the TTR T119M genotype and risk of vascular disease or death in a large prospective cohort study, indicating that TTR tetramer stabilisation through T119M is not protective in this setting.


Subject(s)
Amyloid Neuropathies, Familial/genetics , Cerebrovascular Disorders/genetics , Genetic Association Studies , Prealbumin/genetics , Amyloid Neuropathies, Familial/epidemiology , Amyloid Neuropathies, Familial/pathology , Biological Specimen Banks , Cerebrovascular Disorders/epidemiology , Cerebrovascular Disorders/pathology , Death , Denmark/epidemiology , Genotype , Heterozygote , Humans , Mutation/genetics , Risk Factors , United Kingdom
5.
Elife ; 92020 03 24.
Article in English | MEDLINE | ID: mdl-32207686

ABSTRACT

By sequencing autozygous human populations, we identified a healthy adult woman with lifelong complete knockout of HAO1 (expected ~1 in 30 million outbred people). HAO1 (glycolate oxidase) silencing is the mechanism of lumasiran, an investigational RNA interference therapeutic for primary hyperoxaluria type 1. Her plasma glycolate levels were 12 times, and urinary glycolate 6 times, the upper limit of normal observed in healthy reference individuals (n = 67). Plasma metabolomics and lipidomics (1871 biochemicals) revealed 18 markedly elevated biochemicals (>5 sd outliers versus n = 25 controls) suggesting additional HAO1 effects. Comparison with lumasiran preclinical and clinical trial data suggested she has <2% residual glycolate oxidase activity. Cell line p.Leu333SerfsTer4 expression showed markedly reduced HAO1 protein levels and cellular protein mis-localisation. In this woman, lifelong HAO1 knockout is safe and without clinical phenotype, de-risking a therapeutic approach and informing therapeutic mechanisms. Unlocking evidence from the diversity of human genetic variation can facilitate drug development.


Subject(s)
Alcohol Oxidoreductases/genetics , Hyperoxaluria, Primary/therapy , RNAi Therapeutics , Adult , Alcohol Oxidoreductases/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Female , Glycolates/metabolism , Humans , Hyperoxaluria, Primary/metabolism
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2203-2209, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31055082

ABSTRACT

The Primary Hyperoxaluria's (PH) are rare autosomal recessive disorders characterized by elevated oxalate production. PH patients suffer recurrent calcium oxalate kidney stone disease, and in severe cases end stage renal disease. Recent evidence has shown that RNA interference may be a suitable approach to reduce oxalate production in PH patients by knocking down key enzymes involved in hepatic oxalate synthesis. In the current study, wild type mice and mouse models of PH1 (AGT KO) and PH2 (GR KO) were treated with siRNA that targets hepatic LDHA. Although siRNA treatment substantially reduced urinary oxalate excretion [75%] in AGT KO animals, there was a relatively modest reduction [32%] in GR KO animals. Plasma and liver pyruvate levels significantly increased with siRNA treatment and liver organic acid analysis indicated significant changes in a number of glycolytic and TCA cycle metabolites, consistent with the known role of LDHA in metabolism. However, siRNA dosing data suggest that it may be possible to identify a dose that limits changes in liver organic acid levels, while maintaining a desired effect of reducing glyoxylate to oxalate synthesis. These results suggest that RNAi mediated reduction of hepatic LDHA may be an effective strategy to reduce oxalate synthesis in PH, and further analysis of its metabolic effects should be explored. Additional studies should also clarify in GR KO animals whether there are alternate enzymatic pathways in the liver to create oxalate and whether tissues other than liver contribute significantly to oxalate production.


Subject(s)
Hyperoxaluria, Primary/pathology , Lactate Dehydrogenases/metabolism , Oxalates/urine , AMP-Activated Protein Kinases/metabolism , Animals , Disease Models, Animal , Hyperoxaluria, Primary/metabolism , Lactate Dehydrogenases/antagonists & inhibitors , Lactate Dehydrogenases/genetics , Liver/metabolism , Mice , Mice, Knockout , Pyruvic Acid/metabolism , RNA Interference , RNA, Small Interfering/metabolism
7.
J Am Soc Nephrol ; 28(2): 494-503, 2017 02.
Article in English | MEDLINE | ID: mdl-27432743

ABSTRACT

Primary hyperoxaluria type 1 (PH1), an inherited rare disease of glyoxylate metabolism, arises from mutations in the enzyme alanine-glyoxylate aminotransferase. The resulting deficiency in this enzyme leads to abnormally high oxalate production resulting in calcium oxalate crystal formation and deposition in the kidney and many other tissues, with systemic oxalosis and ESRD being a common outcome. Although a small subset of patients manages the disease with vitamin B6 treatments, the only effective treatment for most is a combined liver-kidney transplant, which requires life-long immune suppression and carries significant mortality risk. In this report, we discuss the development of ALN-GO1, an investigational RNA interference (RNAi) therapeutic targeting glycolate oxidase, to deplete the substrate for oxalate synthesis. Subcutaneous administration of ALN-GO1 resulted in potent, dose-dependent, and durable silencing of the mRNA encoding glycolate oxidase and increased serum glycolate concentrations in wild-type mice, rats, and nonhuman primates. ALN-GO1 also increased urinary glycolate concentrations in normal nonhuman primates and in a genetic mouse model of PH1. Notably, ALN-GO1 reduced urinary oxalate concentration up to 50% after a single dose in the genetic mouse model of PH1, and up to 98% after multiple doses in a rat model of hyperoxaluria. These data demonstrate the ability of ALN-GO1 to reduce oxalate production in preclinical models of PH1 across multiple species and provide a clear rationale for clinical trials with this compound.


Subject(s)
Alcohol Oxidoreductases , Hyperoxaluria, Primary/enzymology , Hyperoxaluria, Primary/therapy , Oxalates/metabolism , RNAi Therapeutics , Alcohol Oxidoreductases/genetics , Animals , Disease Models, Animal , Gene Silencing , Liver/enzymology , Male , Mice , Primates , RNA, Messenger , Rats
8.
Structure ; 21(11): 1966-78, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24120761

ABSTRACT

The long circulating half-life of serum albumin, the most abundant protein in mammalian plasma, derives from pH-dependent endosomal salvage from degradation, mediated by the neonatal Fc receptor (FcRn). Using yeast display, we identified human serum albumin (HSA) variants with increased affinity for human FcRn at endosomal pH, enabling us to solve the crystal structure of a variant HSA/FcRn complex. We find an extensive, primarily hydrophobic interface stabilized by hydrogen-bonding networks involving protonated histidines internal to each protein. The interface features two key FcRn tryptophan side chains inserting into deep hydrophobic pockets on HSA that overlap albumin ligand binding sites. We find that fatty acids (FAs) compete with FcRn, revealing a clash between ligand binding and recycling, and that our high-affinity HSA variants have significantly increased circulating half-lives in mice and monkeys. These observations open the way for the creation of biotherapeutics with significantly improved pharmacokinetics.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Receptors, Fc/chemistry , Serum Albumin/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding, Competitive , Female , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Kinetics , Ligands , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Mimicry , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Rats , Sequence Homology , Serum Albumin/genetics , beta 2-Microglobulin/chemistry
9.
Nat Biotechnol ; 29(11): 1028-33, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-22020385

ABSTRACT

Effective therapies are needed to control excessive bleeding in a range of clinical conditions. We improve hemostasis in vivo using a conformationally pliant variant of coagulation factor Xa (FXa(I16L)) rendered partially inactive by a defect in the transition from zymogen to active protease. Using mouse models of hemophilia, we show that FXa(I16L) has a longer half-life than wild-type FXa and does not cause excessive activation of coagulation. Once clotting mechanisms are activated to produce its cofactor FVa, FXa(I16L) is driven to the protease state and restores hemostasis in hemophilic animals upon vascular injury. Moreover, using human or murine analogs, we show that FXa(I16L) is more efficacious than FVIIa, which is used to treat bleeding in hemophilia inhibitor patients. FXa(I16L) may provide an effective strategy to enhance blood clot formation and act as a rapid pan-hemostatic agent for the treatment of bleeding conditions.


Subject(s)
Enzyme Precursors/therapeutic use , Factor Xa/therapeutic use , Hemophilia A/drug therapy , Hemostatics/therapeutic use , Animals , Blood Coagulation/genetics , Disease Models, Animal , Enzyme Precursors/pharmacokinetics , Factor VIIa/genetics , Factor VIIa/metabolism , Factor Xa/pharmacokinetics , Gene Expression , HEK293 Cells , Hemorrhage/drug therapy , Hemostasis/genetics , Hemostatics/pharmacokinetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , Thrombelastography , Thrombin/metabolism
10.
Proc Natl Acad Sci U S A ; 106(1): 262-7, 2009 Jan 06.
Article in English | MEDLINE | ID: mdl-19116277

ABSTRACT

In a search for more effective anti-diabetic treatment, we used a process coupling low-affinity biochemical screening with high-throughput co-crystallography in the design of a series of compounds that selectively modulate the activities of all three peroxisome proliferator-activated receptors (PPARs), PPARalpha, PPARgamma, and PPARdelta. Transcriptional transactivation assays were used to select compounds from this chemical series with a bias toward partial agonism toward PPARgamma, to circumvent the clinically observed side effects of full PPARgamma agonists. Co-crystallographic characterization of the lead molecule, indeglitazar, in complex with each of the 3 PPARs revealed the structural basis for its PPAR pan-activity and its partial agonistic response toward PPARgamma. Compared with full PPARgamma-agonists, indeglitazar is less potent in promoting adipocyte differentiation and only partially effective in stimulating adiponectin gene expression. Evaluation of the compound in vivo confirmed the reduced adiponectin response in animal models of obesity and diabetes while revealing strong beneficial effects on glucose, triglycerides, cholesterol, body weight, and other metabolic parameters. Indeglitazar has now progressed to Phase II clinical evaluations for Type 2 diabetes mellitus (T2DM).


Subject(s)
Drug Discovery/methods , Hypoglycemic Agents/therapeutic use , PPAR gamma/agonists , Peroxisome Proliferator-Activated Receptors/agonists , Adipocytes/cytology , Adiponectin/genetics , Animals , Cell Differentiation/drug effects , Cell Line , Diabetes Mellitus, Experimental/drug therapy , Humans , Hypoglycemic Agents/pharmacology , Mice , Obesity/drug therapy , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptors/genetics , Rats , Transcriptional Activation/drug effects
11.
Arch Biochem Biophys ; 483(1): 45-54, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19121282

ABSTRACT

Tissue specific amplification of glucocorticoid action through NADPH-dependent reduction of inactive glucocorticoid precursors by 11beta-hydroxysteroid dehydrogenase (11beta-HSD1) contributes to the development of visceral obesity, insulin resistance and Type 2 Diabetes. Hexose-6-phosphate dehydrogenase (H6PDH) is believed to supply NADPH for the reductase activity of 11beta-HSD1 in the lumen of the endoplasmic reticulum (ER), where the two enzymes are co-localized. We report here expression and purification of full-length and truncated N-terminal domain (NTD) of H6PDH in a mammalian expression system. Interestingly, both full-length H6PDH and the truncated NTD are secreted into the culture medium in the absence of 11beta-HSD1. Purified full-length H6PDH is a bi-functional enzyme with glucose-6-phosphate dehydrogenase (G6PDH) activity as well as 6-phosphogluconolactonase (6PGL) activity. Using co-immunoprecipitation experiments with purified H6PDH and 11beta-HSD1, and with cell lysates expressing H6PDH and 11beta-HSD1, we observe direct physical interaction between the two enzymes. We also show the modulation of 11beta-HSD1 directionality by H6PDH using overexpression and siRNA knockdown systems. The NTD retains the ability to interact with 11beta-HSD1 physically as well as modulate 11beta-HSD1 directionality indicating that the NTD of H6PDH is sufficient for the regulation of the 11beta-HSD1 activity.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Carbohydrate Dehydrogenases/metabolism , Glucocorticoids/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Base Sequence , Carbohydrate Dehydrogenases/genetics , Catalysis , Cell Line , DNA Primers/genetics , Gluconates/metabolism , Humans , In Vitro Techniques , Kinetics , Mutagenesis, Site-Directed , RNA Interference , RNA, Small Interfering/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Transfection
12.
PPAR Res ; 2008: 125387, 2008.
Article in English | MEDLINE | ID: mdl-18989368

ABSTRACT

The prevalence of obesity in the USA and worldwide has reached epidemic proportions during the last two decades. Drugs currently available for the treatment of obesity provide no more than 5% placebo-adjusted weight loss and are associated with undesirable side effects. Peroxisome proliferator-activated receptor (PPAR) modulators offer potential benefits for the treatment of obesity and its associated complications but their development has been complicated by biological, technical, and regulatory challenges. Despite significant challenges, PPAR modulators are attractive targets for the treatment of obesity and could offer a viable alternative to the millions of patients who fail to lose weight following rigorous dieting and exercise protocols. In addition, PPAR modulators have the potential-added benefit of ameliorating the associated comorbidities.

14.
J Med Chem ; 50(19): 4681-98, 2007 Sep 20.
Article in English | MEDLINE | ID: mdl-17705360

ABSTRACT

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin and leptin receptor pathways and thus an attractive therapeutic target for diabetes and obesity. Starting with a high micromolar lead compound, structure-based optimization of novel PTP1B inhibitors by extension of the molecule from the enzyme active site into the second phosphotyrosine binding site is described. Medicinal chemistry, guided by X-ray complex structure and molecular modeling, has yielded low nanomolar PTP1B inhibitors in an efficient manner. Compounds from this chemical series were found to be actively transported into hepatocytes. This active uptake into target tissues could be one of the possible avenues to overcome the poor membrane permeability of PTP1B inhibitors.


Subject(s)
Models, Molecular , Phosphotyrosine/metabolism , Protein Tyrosine Phosphatases/antagonists & inhibitors , Thiophenes/chemical synthesis , Animals , Binding Sites , Caco-2 Cells , Catalytic Domain , Cell Membrane Permeability , Crystallography, X-Ray , Half-Life , Hepatocytes , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Structure , Phosphotyrosine/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/chemistry , Rats , Rats, Sprague-Dawley , Solubility , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Tissue Distribution
15.
Anal Biochem ; 365(2): 174-84, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17481567

ABSTRACT

Considerable effort exists within drug discovery to develop novel compounds to improve the underlying metabolic defects in type 2 diabetes. One approach is focused on inhibition of the tyrosine phosphatase, PTP1B, an important negative regulator of both insulin and leptin signaling. Historically, tyrosine phosphatase assays have used either small organic phosphates or, alternatively, phosphorylated peptides from the target proteins themselves. In characterizing inhibitors of PTP1B, measuring turnover of small organic phosphates is limited to evaluation of compounds that bind the active site itself. Peptide substrates allow identification of additional subsets of inhibitors (e.g., those that bind the second aryl-phosphate site), but assays of peptide turnover often involve detection steps that then limit full kinetic evaluation of inhibitors. Here we use a polyclonal antibody specific for the phosphorylated insulin receptor to allow much more sensitive detection of peptide phosphorylation. This kinetically robust enzyme-linked immunosorbent assay (ELISA) gives k(cat) and K(m) values for a phosphorylated insulin receptor peptide consistent with values determined by a continuous fluorescence-based assay. Furthermore, IC50 values determined for well-behaved active site inhibitors agree well with values determined for p-nitrophenyl phosphate cleavage. This assay permits full characterization of a larger subset of inhibitors as drug candidates for this promising target.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Protein Tyrosine Phosphatases/metabolism , Receptor, Insulin/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Molecular Structure , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/antagonists & inhibitors , Sensitivity and Specificity , Time Factors
16.
Bioorg Med Chem Lett ; 17(10): 2913-20, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17336064

ABSTRACT

The following account describes our systematic effort to replace one of the carboxylate groups of our diacid thiophene PTP1B inhibitors. Active hits were validated using enzymatic assays before pursuing efforts to improve the potency. Only when the C2 carboxylic acid was replaced with another ionizable functional group was reversible and competitive inhibition retained. Use of a tetrazole ring or 1,2,5-thiadiazolidine-3-one-1,1-dioxide as a carboxylate mimetic led to the discovery of two unique starting series that showed improved permeability (PAMPA) and potency of the order of 300nM. The SAR from these efforts underscores some of the major challenges in developing small molecule inhibitors for PTP1B.


Subject(s)
Protein Tyrosine Phosphatases/antagonists & inhibitors , Thiophenes/pharmacology , Acids/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/classification , Humans , Molecular Structure , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/metabolism , Structure-Activity Relationship , Thiophenes/chemistry
17.
Vascul Pharmacol ; 45(3): 154-62, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16765099

ABSTRACT

OBJECTIVE AND DESIGN: Elevated blood pressure and insulin resistance are strongly associated in patients. We explored the potential for the anti-hypertensive angiotensin II type 1-receptor (ATR(1)) antagonists to improve insulin sensitivity through modulation of the nuclear receptor PPARgamma, in vitro and in vivo compared to the potent insulin sensitizer, rosiglitazone. METHODS: PPARgamma modulation by ATR(1) antagonists was measured first by direct recruitment of PGC-1, followed by trans-activation reporter assays in cells, and promotion of adipogenesis in fibroblast and pre-adipocyte cell lines. Improvement of insulin sensitivity was measured as changes in levels of glucose, insulin, and adiponectin in ob/ob mice. RESULTS: Telmisartan, candesartan, irbesartan, and losartan (but not valsartan or olmesartan) each served as bona fide PPARgamma ligands in vitro, with EC(50) values between 3 and 5 micro mol/l. However, only telmisartan, and to a lesser extent candesartan, resulted in significant PPARgamma agonism in cells. In vivo, although rosiglitazone significantly lowered both glucose (33%, p<0.01) and insulin (61%, p<0.01) levels and increased expression of adiponectin (74%, p<0.001), sartan treatment had no effect. CONCLUSIONS: Many members of the sartan family of ATR(1) antagonists are PPARgamma ligands in cell-free assays but their modulation of PPARgamma in cells is relatively weak. Furthermore, none appear to improve insulin sensitivity in a rodent model under conditions where other insulin sensitizers, including rosiglitazone, do. These results question whether reported effects of sartans on insulin sensitivity may be through other means, and should guide further efforts to develop dual agents to treat hypertension and insulin resistance.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Hypoglycemic Agents/pharmacology , Insulin Resistance , PPAR gamma/agonists , 3T3-L1 Cells , Adipogenesis/drug effects , Adiponectin/blood , Angiotensin II Type 1 Receptor Blockers/chemistry , Animals , Blood Glucose/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Hypoglycemic Agents/chemistry , Insulin/blood , Male , Mice , Mice, Obese , Obesity/blood , Obesity/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Promoter Regions, Genetic/drug effects , Recombinant Proteins/agonists , Rosiglitazone , Structure-Activity Relationship , Thiazolidinediones/pharmacology , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Transfection
19.
Mol Pharmacol ; 67(1): 69-77, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15475571

ABSTRACT

Ertiprotafib belongs to a novel class of insulin sensitizers developed for treatment of type 2 diabetes. In insulin-resistant rodent models, ertiprotafib and a close analog lowered both fasting blood glucose and insulin levels and improved glycemic excursion during an oral glucose tolerance test. In addition, treatment of rodents improved lipid profiles, with significantly lowered triglyceride and free fatty acid levels. These results suggested that this therapeutic activity might involve mechanisms in addition to PTP1b inhibition. In this study, we demonstrate that ertiprotafib activates peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma at concentrations comparable with those of known agonists of these regulators. Furthermore, it is able to drive adipocyte differentiation of C3H10T(1/2) cells, a hallmark of PPARgamma activation. Livers from ertiprotafib-treated animals showed significant induction of acyl-CoA oxidase activity, probably caused by PPARalpha engagement in these animals. We also show that ertiprotafib inhibits PTP1b in vitro with nonclassic kinetics at concentrations above its EC(50) for PPAR agonism. Thus, the complete mechanism of action for ertiprotafib and related compounds in vivo may involve multiple independent mechanisms, including (but not necessarily limited to) PTP1b inhibition and dual PPARalpha/PPARgamma agonism. Ertiprotafib pharmacology and interpretation of clinical results must be seen in light of this complexity.


Subject(s)
Adipocytes/cytology , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Phenylpropionates/pharmacology , Thiophenes/pharmacology , Adipocytes/drug effects , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Cell Differentiation/drug effects , Humans , Insulin/blood , Kinetics , Lipids/blood , Male , Mice , Mice, Obese , PPAR alpha/genetics , PPAR gamma/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Protein Tyrosine Phosphatases/antagonists & inhibitors , Recombinant Proteins/metabolism , Triglycerides/blood
20.
Immunol Lett ; 83(2): 77-83, 2002 Sep 02.
Article in English | MEDLINE | ID: mdl-12067755

ABSTRACT

Antagonists of the B7 family of co-stimulatory molecules have the potential for altering immune responses therapeutically. To better define the requirements for such inhibitors, we have mapped the binding of an entire panel of blocking antibodies specific for human B7.1. By mutagenesis, each of the residues critical for blocking antibody binding appeared to fall entirely within the N-terminal V-set domain of B7.1. Thus, although antibody-antigen interacting surfaces can be quite large, these results indicate that a relatively small portion of the GFCC'C" face of this domain is crucial for further antagonist development.


Subject(s)
B7-1 Antigen/immunology , Amino Acid Sequence , Animals , Antibodies, Blocking/genetics , Antibodies, Blocking/immunology , B7-1 Antigen/genetics , COS Cells , Epitope Mapping , Epitopes, B-Lymphocyte , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...