Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20232023 03 07.
Article in English | MEDLINE | ID: mdl-36882099

ABSTRACT

The BioCreative National Library of Medicine (NLM)-Chem track calls for a community effort to fine-tune automated recognition of chemical names in the biomedical literature. Chemicals are one of the most searched biomedical entities in PubMed, and-as highlighted during the coronavirus disease 2019 pandemic-their identification may significantly advance research in multiple biomedical subfields. While previous community challenges focused on identifying chemical names mentioned in titles and abstracts, the full text contains valuable additional detail. We, therefore, organized the BioCreative NLM-Chem track as a community effort to address automated chemical entity recognition in full-text articles. The track consisted of two tasks: (i) chemical identification and (ii) chemical indexing. The chemical identification task required predicting all chemicals mentioned in recently published full-text articles, both span [i.e. named entity recognition (NER)] and normalization (i.e. entity linking), using Medical Subject Headings (MeSH). The chemical indexing task required identifying which chemicals reflect topics for each article and should therefore appear in the listing of MeSH terms for the document in the MEDLINE article indexing. This manuscript summarizes the BioCreative NLM-Chem track and post-challenge experiments. We received a total of 85 submissions from 17 teams worldwide. The highest performance achieved for the chemical identification task was 0.8672 F-score (0.8759 precision and 0.8587 recall) for strict NER performance and 0.8136 F-score (0.8621 precision and 0.7702 recall) for strict normalization performance. The highest performance achieved for the chemical indexing task was 0.6073 F-score (0.7417 precision and 0.5141 recall). This community challenge demonstrated that (i) the current substantial achievements in deep learning technologies can be utilized to improve automated prediction accuracy further and (ii) the chemical indexing task is substantially more challenging. We look forward to further developing biomedical text-mining methods to respond to the rapid growth of biomedical literature. The NLM-Chem track dataset and other challenge materials are publicly available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/. Database URL https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/.


Subject(s)
COVID-19 , United States , Humans , National Library of Medicine (U.S.) , Data Mining , Databases, Factual , MEDLINE
2.
bioRxiv ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38168218

ABSTRACT

To cope with the rapid growth of scientific publications and data in biomedical research, knowledge graphs (KGs) have emerged as a powerful data structure for integrating large volumes of heterogeneous data to facilitate accurate and efficient information retrieval and automated knowledge discovery (AKD). However, transforming unstructured content from scientific literature into KGs has remained a significant challenge, with previous methods unable to achieve human-level accuracy. In this study, we utilized an information extraction pipeline that won first place in the LitCoin NLP Challenge to construct a largescale KG using all PubMed abstracts. The quality of the large-scale information extraction rivals that of human expert annotations, signaling a new era of automatic, high-quality database construction from literature. Our extracted information markedly surpasses the amount of content in manually curated public databases. To enhance the KG's comprehensiveness, we integrated relation data from 40 public databases and relation information inferred from high-throughput genomics data. The comprehensive KG enabled rigorous performance evaluation of AKD, which was infeasible in previous studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal relations and achieved unprecedented results for drug target identification and drug repurposing. Taking lung cancer as an example, we found that 40% of drug targets reported in literature could have been predicted by our algorithm about 15 years ago in a retrospective study, demonstrating that substantial acceleration in scientific discovery could be achieved through automated hypotheses generation and timely dissemination. A cloud-based platform (https://www.biokde.com) was developed for academic users to freely access this rich structured data and associated tools.

3.
AMIA Annu Symp Proc ; 2023: 407-416, 2023.
Article in English | MEDLINE | ID: mdl-38222337

ABSTRACT

Viewing laboratory test results is patients' most frequent activity when accessing patient portals, but lab results can be very confusing for patients. Previous research has explored various ways to present lab results, but few have attempted to provide tailored information support based on individual patient's medical context. In this study, we collected and annotated interpretations of textual lab result in 251 health articles about laboratory tests from AHealthyMe.com. Then we evaluated transformer-based language models including BioBERT, ClinicalBERT, RoBERTa, and PubMedBERT for recognizing key terms and their types. Using BioPortal's term search API, we mapped the annotated terms to concepts in major controlled terminologies. Results showed that PubMedBERT achieved the best F1 on both strict and lenient matching criteria. SNOMED CT had the best coverage of the terms, followed by LOINC and ICD-10-CM. This work lays the foundation for enhancing the presentation of lab results in patient portals by providing patients with contextualized interpretations of their lab results and individualized question prompts that they can, in turn, refer to during physician consults.


Subject(s)
Systematized Nomenclature of Medicine , Vocabulary, Controlled , Humans , Logical Observation Identifiers Names and Codes , Language , Information Storage and Retrieval
4.
Database (Oxford) ; 20222022 08 13.
Article in English | MEDLINE | ID: mdl-35962559

ABSTRACT

Large volumes of publications are being produced in biomedical sciences nowadays with ever-increasing speed. To deal with the large amount of unstructured text data, effective natural language processing (NLP) methods need to be developed for various tasks such as document classification and information extraction. BioCreative Challenge was established to evaluate the effectiveness of information extraction methods in biomedical domain and facilitate their development as a community-wide effort. In this paper, we summarize our work and what we have learned from the latest round, BioCreative Challenge VII, where we participated in all five tracks. Overall, we found three key components for achieving high performance across a variety of NLP tasks: (1) pre-trained NLP models; (2) data augmentation strategies and (3) ensemble modelling. These three strategies need to be tailored towards the specific tasks at hands to achieve high-performing baseline models, which are usually good enough for practical applications. When further combined with task-specific methods, additional improvements (usually rather small) can be achieved, which might be critical for winning competitions. Database URL: https://doi.org/10.1093/database/baac066.


Subject(s)
Data Mining , Natural Language Processing , Data Mining/methods , Databases, Factual , Machine Learning
5.
AMIA Jt Summits Transl Sci Proc ; 2022: 226-235, 2022.
Article in English | MEDLINE | ID: mdl-35854753

ABSTRACT

Subtyping of Alzheimer's disease (AD) can facilitate diagnosis, treatment, prognosis and disease management. It can also support the testing of new prevention and treatment strategies through clinical trials. In this study, we employed spectral clustering to cluster 29,922 AD patients in the OneFlorida Data Trust using their longitudinal EHR data of diagnosis and conditions into four subtypes. These subtypes exhibit different patterns of progression of other conditions prior to the first AD diagnosis. In addition, according to the results of various statistical tests, these subtypes are also significantly different with respect to demographics, mortality, and prescription medications after the AD diagnosis. This study could potentially facilitate early detection and personalized treatment of AD as well as data-driven generalizability assessment of clinical trials for AD.

6.
Article in English | MEDLINE | ID: mdl-36818418

ABSTRACT

User-generated social media posts such as tweets can provide insights about the public's perception, cognitive, and behavioral responses to health-related issues. Pre-Exposure Prophylaxis (PrEP) is one of the most effective ways to reduce the risk of HIV infection. However, its utilization is low in the US, especially among populations disproportionately affected by HIV such as the age group of under 24 years old. It is therefore important to understand the barriers to the wider use of PrEP in the US using social media posts. In this study, we collected tweets from Twitter about PrEP in the past 4 years to identify such barriers by first identifying tweets about personal discussions, and then performing textual analysis using word analysis, UMLS semantic type analysis, and topic modeling. We found that the public often discussed advocacy, risks/benefits, access, pricing, insurance coverage, legislation, stigma, health education, and prevention of HIV. This result is consistent with the literature and can help identify strategies for promoting the use of PrEP, especially among young adults.

7.
ACM BCB ; 20212021 Aug.
Article in English | MEDLINE | ID: mdl-34414397

ABSTRACT

The rapid adoption of electronic health records (EHRs) systems has made clinical data available in electronic format for research and for many downstream applications. Electronic screening of potentially eligible patients using these clinical databases for clinical trials is a critical need to improve trial recruitment efficiency. Nevertheless, manually translating free-text eligibility criteria into database queries is labor intensive and inefficient. To facilitate automated screening, free-text eligibility criteria must be structured and coded into a computable format using controlled vocabularies. Named entity recognition (NER) is thus an important first step. In this study, we evaluate 4 state-of-the-art transformer-based NER models on two publicly available annotated corpora of eligibility criteria released by Columbia University (i.e., the Chia data) and Facebook Research (i.e.the FRD data). Four transformer-based models (i.e., BERT, ALBERT, RoBERTa, and ELECTRA) pretrained with general English domain corpora vs. those pretrained with PubMed citations, clinical notes from the MIMIC-III dataset and eligibility criteria extracted from all the clinical trials on ClinicalTrials.gov were compared. Experimental results show that RoBERTa pretrained with MIMIC-III clinical notes and eligibility criteria yielded the highest strict and relaxed F-scores in both the Chia data (i.e., 0.658/0.798) and the FRD data (i.e., 0.785/0.916). With promising NER results, further investigations on building a reliable natural language processing (NLP)-assisted pipeline for automated electronic screening are needed.

8.
JAMIA Open ; 4(2): ooab032, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34056559

ABSTRACT

OBJECTIVE: In the past few months, a large number of clinical studies on the novel coronavirus disease (COVID-19) have been initiated worldwide to find effective therapeutics, vaccines, and preventive strategies for COVID-19. In this study, we aim to understand the landscape of COVID-19 clinical research and identify the issues that may cause recruitment difficulty or reduce study generalizability. METHODS: We analyzed 3765 COVID-19 studies registered in the largest public registry-ClinicalTrials.gov, leveraging natural language processing (NLP) and using descriptive, association, and clustering analyses. We first characterized COVID-19 studies by study features such as phase and tested intervention. We then took a deep dive and analyzed their eligibility criteria to understand whether these studies: (1) considered the reported underlying health conditions that may lead to severe illnesses, and (2) excluded older adults, either explicitly or implicitly, which may reduce the generalizability of these studies to the older adults population. RESULTS: Our analysis included 2295 interventional studies and 1470 observational studies. Most trials did not explicitly exclude older adults with common chronic conditions. However, known risk factors such as diabetes and hypertension were considered by less than 5% of trials based on their trial description. Pregnant women were excluded by 34.9% of the studies. CONCLUSIONS: Most COVID-19 clinical studies included both genders and older adults. However, risk factors such as diabetes, hypertension, and pregnancy were under-represented, likely skewing the population that was sampled. A careful examination of existing COVID-19 studies can inform future COVID-19 trial design towards balanced internal validity and generalizability.

9.
medRxiv ; 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32995807

ABSTRACT

OBJECTIVE: The novel coronavirus disease (COVID-19), broke out in December 2019, and is now a global pandemic. In the past few months, a large number of clinical studies have been initiated worldwide to find effective therapeutics, vaccines, and preventive strategies for COVID-19. In this study, we aim to understand the landscape of COVID-19 clinical research and identify the gaps such as the lack of population representativeness and issues that may cause recruitment difficulty. MATERIALS AND METHODS: We analyzed 3,765 COVID-19 studies registered in the largest public registry - ClinicalTrials.gov, leveraging natural language processing and using descriptive, association, and clustering analyses. We first characterized COVID-19 studies by study features such as phase and tested intervention. We then took a deep dive and analyzed their eligibility criteria to understand whether these studies: (1) considered the reported underlying health conditions that may lead to severe illnesses, and (2) excluded older adults, either explicitly or implicitly, which may reduce the generalizability of these studies to the older adults population. RESULTS: Most trials did not have an upper age limit and did not exclude patients with common chronic conditions such as hypertension and diabetes that are more prevalent in older adults. However, known risk factors that may lead to severe illnesses have not been adequately considered. CONCLUSIONS: A careful examination of existing COVID-19 studies can inform future COVID-19 trial design towards balanced internal validity and generalizability.

SELECTION OF CITATIONS
SEARCH DETAIL
...