Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 12(2)2022 02 07.
Article in English | MEDLINE | ID: mdl-35204768

ABSTRACT

The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation.


Subject(s)
Dinoprostone , Indomethacin , Animals , Anti-Inflammatory Agents/pharmacology , Prostaglandins E , Rats
2.
Biomolecules ; 11(2)2021 02 13.
Article in English | MEDLINE | ID: mdl-33668480

ABSTRACT

Prostaglandin E2 (PGE2) is a key mediator of inflammation, and consequently huge efforts have been devoted to the development of novel agents able to regulate its formation. In this work, we present the synthesis of various α-ketoheterocycles and a study of their ability to inhibit the formation of PGE2 at a cellular level. A series of α-ketobenzothiazoles, α-ketobenzoxazoles, α-ketobenzimidazoles, and α-keto-1,2,4-oxadiazoles were synthesized and chemically characterized. Evaluation of their ability to suppress the generation of PGE2 in interleukin-1ß plus forskolin-stimulated mesangial cells led to the identification of one α-ketobenzothiazole (GK181) and one α-ketobenzoxazole (GK491), which are able to suppress the PGE2 generation at a nanomolar level.


Subject(s)
Dinoprostone/antagonists & inhibitors , Glomerular Mesangium/drug effects , Heterocyclic Compounds/pharmacology , Prostaglandin Antagonists/pharmacology , Animals , Cells, Cultured , Dinoprostone/biosynthesis , Glomerular Mesangium/cytology , Glomerular Mesangium/metabolism , Molecular Docking Simulation , Rats , Spectrum Analysis/methods
3.
Int J Mol Sci ; 21(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092937

ABSTRACT

Ceramide kinase (CerK) is a lipid kinase that converts the proapoptotic ceramide to ceramide 1-phosphate, which has been proposed to have pro-malignant properties and regulate cell responses such as proliferation, migration, and inflammation. We used the parental human breast cancer cell line MDA-MB-231 and two single cell progenies derived from lung and bone metastasis upon injection of the parental cells into immuno-deficient mice. The lung and the bone metastatic cell lines showed a marked upregulation of CerK mRNA and activity when compared to the parental cell line. The metastatic cells also had increased migratory and invasive activity, which was dose-dependently reduced by the selective CerK inhibitor NVP-231. A similar reduction of migration was seen when CerK was stably downregulated with small hairpin RNA (shRNA). Conversely, overexpression of CerK in parental MDA-MB-231 cells enhanced migration, and this effect was also observed in the non-metastatic cell line MCF7 upon CerK overexpression. On the molecular level, CerK overexpression increased the activation of protein kinase Akt. The increased migration of CerK overexpressing cells was mitigated by the CerK inhibitor NVP-231, by inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway and the Rho kinase, but not by inhibition of the classical extracellular signal-regulated kinase (ERK) pathway. Altogether, our data demonstrate for the first time that CerK promotes migration and invasion of metastatic breast cancer cells and that targeting of CerK has potential to counteract metastasis in breast cancer.


Subject(s)
Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Movement/genetics , Lung Neoplasms/metabolism , Neoplasm Invasiveness/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Animals , Benzothiazoles/pharmacology , Bone Neoplasms/enzymology , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Bridged-Ring Compounds/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice , Mice, Knockout , Phosphatidylinositol 3-Kinases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Up-Regulation
4.
Int J Mol Sci ; 19(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-29772789

ABSTRACT

Sphingosine kinase (SK) catalyses the formation of sphingosine 1-phosphate (S1P), which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor ß (TGFß) induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF) and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFß-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1) by the pro-inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)-1ß. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1ß/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFß-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.


Subject(s)
Anion Transport Proteins/genetics , Epithelial Cells/metabolism , Gene Expression Regulation , Kidney Tubules, Proximal/metabolism , Biomarkers , Cells, Cultured , Down-Regulation , Epithelial Cells/pathology , Fibrosis , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Inflammation , Kidney Tubules, Proximal/pathology , Lysophospholipids/metabolism , Podocytes/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...