Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Epidemiol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802612

ABSTRACT

INTRODUCTION: Nitrate and nitrite are naturally occurring in both plant- and animal-sourced foods, are used as additives in the processing of meat, and are found in water. There is growing evidence that they exhibit a spectrum of health effects, depending on the dietary source. The aim of the study was to examine source-dependent associations between dietary intakes of nitrate/nitrite and both all-cause and cause-specific mortality. METHODS: In 52,247 participants of the Danish Diet, Cancer and Health Study, associations between source-dependent nitrate and nitrite intakes--calculated using comprehensive food composition and national drinking water quality monitoring databases--and all-cause, cardiovascular disease (CVD)-related, and cancer-related mortality over 27 years were examined using restricted cubic splines within Cox proportional hazards models adjusting for demographic, lifestyle, and dietary confounders. Analyses were stratified by factors hypothesised to influence the formation of carcinogenic N-nitroso compounds (namely, smoking and dietary intakes of vitamin C, vitamin E, folate, and polyphenols). RESULTS: Plant-sourced nitrate intake was inversely associated with all-cause mortality [HRQ5vsQ1: 0.83 (0.80, 0.87)] while higher risks of all-cause mortality were seen for higher intakes of naturally occurring animal-sourced nitrate [1.09 (1.04, 1.14)], additive permitted meat-sourced nitrate [1.19 (1.14, 1.25)], and tap water-sourced nitrate [1.19 (1.14, 1.25)]. Similar source-dependent associations were seen for nitrite and for CVD-related and cancer-related mortality except that naturally occurring animal-sourced nitrate and tap water-sourced nitrate were not associated with cancer-related mortality and additive permitted meat-sourced nitrate was not associated with CVD-related mortality. No clear patterns emerged in stratified analyses. CONCLUSION: Nitrate/nitrite from plant sources are inversely associated while those from naturally occurring animal-sources, additive-permitted meat sources, and tap water-sources are positively associated with mortality.

2.
Front Nutr ; 11: 1326991, 2024.
Article in English | MEDLINE | ID: mdl-38476601

ABSTRACT

Background: The dietary source and intake levels of nitrate and nitrite may govern its deleterious versus beneficial effects on human health. Existing evidence on detailed source-specific intake is limited. The objectives of this study were to assess nitrate and nitrite intakes from different dietary sources (plant-based foods, animal-based foods, and water), characterize the background diets of participants with low and high intakes, and investigate how sociodemographic and lifestyle factors associate with intake levels. Methods: In the Danish Diet, Cancer and Health Cohort, sociodemographic and lifestyle information was obtained from participants at enrolment (1993-1997). Source-dependent nitrate and nitrite intakes were calculated using comprehensive food composition databases, with tap water nitrate intakes estimated via the national drinking water quality monitoring database linked with participants' residential addresses from 1978 to 2016. Underlying dietary patterns were examined using radar plots comparing high to low consumers while sociodemographic predictors of source-dependent nitrate intakes were investigated using linear regression models. Results: In a Danish cohort of 55,754 participants aged 50-65 at enrolment, the median [IQR] intakes of dietary nitrate and nitrite were 58.13 [44.27-74.90] mg/d and 1.79 [1.43-2.21] mg/d, respectively. Plant-based foods accounted for ~76% of nitrate intake, animal-based foods ~10%, and water ~5%. Nitrite intake was sourced roughly equally from plants and animals. Higher plant-sourced nitrate intake was associated with healthier lifestyles, better dietary patterns, more physical activity, higher education, lower age and lower BMI. Females and participants who had never smoked also had significantly higher plant-sourced nitrate intakes. Higher water-sourced nitrate intake was linked to sociodemographic risk factors (smoking, obesity, lower education). Patterns for animal-sourced nitrate were less clear. Conclusion: Participants with higher plant-sourced nitrate intakes tend to be healthier while participants with higher water-sourced nitrate intakes tended to be unhealthier than their low consuming counterparts. Future research in this cohort should account for the sociodemographic and dietary predictors of source-specific nitrate intake we have identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...