Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 10(4): 447-457, 2019.
Article in English | MEDLINE | ID: mdl-30810441

ABSTRACT

High-protein diets may be linked to gut inflammation due to increased production of hydrogen sulfide (H2S), a potential toxin, as an end product of microbial fermentation in the colon by sulfidogenic sulfate-reducing bacteria (SRB). We hypothesized that dietary content of sulfur-containing amino acids (SAA) leads to variation in the relative abundances of intestinal SRB, which include Desulfovibrio and Bilophila taxa. To test this hypothesis we performed a pilot crossover study in four healthy volunteers, who consumed two interventional diets for 10-14 days, containing high or low SAA content. The total energy intake was similar between the two dietary extremes. Microbial communities were characterized by 16S rRNA gene amplicon and shotgun next-generation DNA sequencing. While the relative abundance of Desulfovibrio differed among participants (ANOVA P= 0.001), we could not detect a change with dietary treatments. Similarly, no differences in Bilophila abundance were observed among individuals or dietary arms. Inter-personal differences in microbial community composition and functional gene categories differed between subjects and these differences were maintained over the course of the study. These observations are consistent with re-analysis of two previously published dietary intervention studies. Finally, we found that inter-personal differences in the taxonomic composition of fecal microbiota, including the relative abundances of SRB, were maintained over time in 19 healthy individuals in our stool donor program. These results suggest that the use of dietary interventions alone may be insufficient for rapid therapeutic targeting of SRB. Nevertheless, these pilot data provide a foundation to inform future, statistically powered, studies.


Subject(s)
Bacteria/drug effects , Diet , Intestines/microbiology , Sulfates/metabolism , Sulfur/metabolism , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bilophila/genetics , Bilophila/growth & development , Bilophila/metabolism , Cross-Over Studies , Desulfovibrio/genetics , Desulfovibrio/growth & development , Desulfovibrio/metabolism , Feces/microbiology , Female , Healthy Volunteers , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Sulfur/pharmacology
2.
mSystems ; 3(5)2018.
Article in English | MEDLINE | ID: mdl-30225373

ABSTRACT

Enterococcus faecalis is a common commensal bacterium in animal gastrointestinal (GI) tracts and a leading cause of opportunistic infections of humans in the modern health care setting. E. faecalis OG1RF is a plasmid-free strain that contains few mobile elements yet retains the robust survival characteristics, intrinsic antibiotic resistance, and virulence traits characteristic of most E. faecalis genotypes. To facilitate interrogation of the core enterococcal genetic determinants for competitive fitness in the GI tract, biofilm formation, intrinsic antimicrobial resistance, and survival in the environment, we generated an arrayed, sequence-defined set of chromosomal transposon insertions in OG1RF. We used an orthogonal pooling strategy in conjunction with Illumina sequencing to identify a set of mutants with unique, single Himar-based transposon insertions. The mutants contained insertions in 1,926 of 2,651 (72.6%) annotated open reading frames and in the majority of hypothetical protein-encoding genes and intergenic regions greater than 100 bp in length, which could encode small RNAs. As proof of principle of the usefulness of this arrayed transposon library, we created a minimal input pool containing 6,829 mutants chosen for maximal genomic coverage and used an approach that we term SMarT (sequence-defined mariner technology) transposon sequencing (TnSeq) to identify numerous genetic determinants of bile resistance in E. faecalis OG1RF. These included several genes previously associated with bile acid resistance as well as new loci. Our arrayed library allows functional screening of a large percentage of the genome with a relatively small number of mutants, reducing potential effects of bottlenecking, and enables immediate recovery of mutants following competitions. IMPORTANCE The robust ability of Enterococcus faecalis to survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conserved E. faecalis core genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions in E. faecalis OG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest.

3.
J Med Chem ; 60(8): 3451-3471, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28402634

ABSTRACT

Standard antibiotic-based strategies for the treatment of Clostridium difficile infections disrupt indigenous microbiota and commonly fail to eradicate bacterial spores, two key factors that allow recurrence of infection. As an alternative approach to controlling C. difficile infection, a series of bile acid derivatives have been prepared that inhibit taurocholate-induced spore germination. These analogues have been evaluated in a highly virulent NAP1 strain using optical density and phase-contrast microscopy assays. Heterocycle substitutions at C24 were well-tolerated and several tetrazole-containing derivatives were highly potent inhibitors in both assays, with complete inhibition of spore germination observed at 10-25 µM. To limit intestinal absorption, C7-sulfated analogues designed to avoid active and passive transport pathways were prepared. One of these derivatives, compound 21b, was found to be a potent inhibitor of C. difficile spore germination and poorly permeable in a Caco-2 model of intestinal epithelial absorption, suggesting that it is likely to be gut-restricted.


Subject(s)
Bile Acids and Salts/chemical synthesis , Bile Acids and Salts/pharmacology , Clostridioides difficile/physiology , Spores, Bacterial/physiology , Bile Acids and Salts/chemistry , Cell Line, Tumor , Humans
4.
Appl In Vitro Toxicol ; 3(2): 163-181, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-30148189

ABSTRACT

The potential for chemicals to affect endocrine signaling is commonly evaluated via in vitro receptor binding and gene activation, but these assays, especially antagonism assays, have potential artifacts that must be addressed for accurate interpretation. Results are presented from screening 94 chemicals from 54 chemical groups for estrogen receptor (ER) activation in a competitive rainbow trout ER (rtER) binding assay and a trout liver slice vitellogenin mRNA expression assay. Results from true competitive agonists and antagonists, and inactive chemicals with little or no indication of ER binding or gene activation were easily interpreted. However, results for numerous industrial chemicals were more challenging to interpret, including chemicals with: (1) apparent competitive binding curves but no gene activation, (2) apparent binding and gene inhibition with evidence of either cytotoxicity or changes in assay media pH, (3) apparent binding but non-competitive gene inhibition of unknown cause, or (4) no rtER binding and gene inhibition not due to competitive ER interaction but due to toxicity, pH change, or some unknown cause. The use of endpoints such as toxicity, pH, precipitate formation, and determination of inhibitor dissociation constants (Ki) for interpreting the results of antagonism and binding assays for diverse chemicals is presented. Of the 94 chemicals tested for antagonism only two, tamoxifen and ICI-182780, were found to be true competitive antagonists. This report highlights the use of two different concentrations of estradiol tested in combination with graded concentrations of test chemical to provide the confirmatory evidence to distinguish true competitive antagonism from apparent antagonism.

5.
Zebrafish ; 8(4): 191-202, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22181662

ABSTRACT

As part of an upper level undergraduate developmental biology course at the University of Minnesota Duluth, we developed a unit in which students carried out original research as part of a cooperative class project. Students had the opportunity to gain experience in the scientific method from experimental design all of the way through to the preparation of publication on their research that included text, figures, and tables. This kind of inquiry-based learning has been shown to have many benefits for students, including increased long-term learning and a better understanding of the process of scientific discovery. In our project, students designed experiments to explore why zebrafish typically spawn in the first few hours after the lights come on in the morning. The results of our experiments suggest that spawning still occurs when the dark-to-light transition is altered or absent. This is consistent with the work of others that demonstrates that rhythmic spawning behavior is regulated by an endogenous circadian clock. Our successes and failures carrying out original research as part of an undergraduate course should contribute to the growing approaches for using zebrafish to bring the excitement of experimental science to the classroom.


Subject(s)
Circadian Clocks , Consummatory Behavior/physiology , Developmental Biology/education , Oviposition/physiology , Zebrafish/physiology , Animals , Curriculum , Female , Male , Photoperiod , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...