Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
Cell Death Dis ; 13(9): 806, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127323

ABSTRACT

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.


Subject(s)
Brain Neoplasms , Rhabdoid Tumor , Teratoma , Animals , Brain Neoplasms/genetics , Cilia/metabolism , DNA Helicases/metabolism , Humans , Mice , Nuclear Proteins/metabolism , Rhabdoid Tumor/genetics , Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , Signal Transduction , Teratoma/genetics , Teratoma/pathology , Transcription Factors/genetics , Transcription Factors/therapeutic use
3.
Nature ; 578(7793): 129-136, 2020 02.
Article in English | MEDLINE | ID: mdl-32025019

ABSTRACT

Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA/genetics , DNA Copy Number Variations , DNA, Neoplasm , Genome, Human , Genomics , Humans , Transcriptome
4.
Cell Rep ; 29(8): 2338-2354.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31708418

ABSTRACT

Extra-cranial malignant rhabdoid tumors (MRTs) and cranial atypical teratoid RTs (ATRTs) are heterogeneous pediatric cancers driven primarily by SMARCB1 loss. To understand the genome-wide molecular relationships between MRTs and ATRTs, we analyze multi-omics data from 140 MRTs and 161 ATRTs. We detect similarities between the MYC subgroup of ATRTs (ATRT-MYC) and extra-cranial MRTs, including global DNA hypomethylation and overexpression of HOX genes and genes involved in mesenchymal development, distinguishing them from other ATRT subgroups that express neural-like features. We identify five DNA methylation subgroups associated with anatomical sites and SMARCB1 mutation patterns. Groups 1, 3, and 4 exhibit cytotoxic T cell infiltration and expression of immune checkpoint regulators, consistent with a potential role for immunotherapy in rhabdoid tumor patients.


Subject(s)
Rhabdoid Tumor/metabolism , Rhabdoid Tumor/pathology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/pathology , Child , DNA Methylation/genetics , DNA Methylation/physiology , Female , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Mutation/genetics , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Skull Base Neoplasms/metabolism , Skull Base Neoplasms/pathology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Teratoma/metabolism , Teratoma/pathology
5.
BMC Bioinformatics ; 20(1): 60, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30704404

ABSTRACT

BACKGROUND: High-throughput technologies for analyzing chromosome conformation at a genome scale have revealed that chromatin is organized in topologically associated domains (TADs). While TADs are relatively stable across cell types, intra-TAD activities are cell type specific. Epigenetic profiling of different tissues and cell-types has identified a large number of non-coding epigenetic regulatory elements ('enhancers') that can be located far away from coding genes. Linear proximity is a commonly chosen criterion for associating enhancers with their potential target genes. While enhancers frequently regulate the closest gene, unambiguous identification of enhancer regulated genes remains to be a challenge in the absence of sample matched chromosome conformation data. RESULTS: To associate enhancers with their target genes, we have previously developed and applied a method that tests for significant correlations between enhancer and gene expressions across a cohort of samples. To limit the number of tests, we constrain this analysis to gene-enhancer pairs embedded in the same TAD, where information on TAD boundaries is borrowed from publicly available chromosome conformation capturing ('Hi-C') data. We have now implemented this method as an R Bioconductor package 'InTAD' and verified the software package by reanalyzing available enhancer and gene expression data derived from ependymoma brain tumors. CONCLUSION: The open-source package InTAD is an easy-to-use software tool for identifying proximal and distal enhancer target genes by leveraging information on correlated expression of enhancers and genes that are located in the same TAD. InTAD can be applied to any heterogeneous cohort of samples analyzed by a combination of gene expression and epigenetic profiling techniques and integrates either public or custom information of TAD boundaries.


Subject(s)
Chromosomes/chemistry , Chromosomes/genetics , Computational Biology/methods , Software , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Humans , Molecular Conformation
6.
Cancer Cell ; 35(1): 95-110.e8, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30595504

ABSTRACT

Biallelic inactivation of SMARCB1, encoding a member of the SWI/SNF chromatin remodeling complex, is the hallmark genetic aberration of atypical teratoid rhabdoid tumors (ATRT). Here, we report how loss of SMARCB1 affects the epigenome in these tumors. Using chromatin immunoprecipitation sequencing (ChIP-seq) on primary tumors for a series of active and repressive histone marks, we identified the chromatin states differentially represented in ATRTs compared with other brain tumors and non-neoplastic brain. Re-expression of SMARCB1 in ATRT cell lines enabled confirmation of our genome-wide findings for the chromatin states. Additional generation of ChIP-seq data for SWI/SNF and Polycomb group proteins and the transcriptional repressor protein REST determined differential dependencies of SWI/SNF and Polycomb complexes in regulation of diverse gene sets in ATRTs.


Subject(s)
Chromatin/metabolism , Polycomb-Group Proteins/metabolism , Repressor Proteins/metabolism , Rhabdoid Tumor/metabolism , SMARCB1 Protein/metabolism , Teratoma/metabolism , Binding Sites , Brain/metabolism , Cell Line, Tumor , Chromatin Immunoprecipitation , Epigenomics/methods , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , SMARCB1 Protein/chemistry , Sequence Analysis, DNA , Survival Analysis
7.
Nat Commun ; 10(1): 332, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659187

ABSTRACT

Drugs that modify the epigenome are powerful tools for treating cancer, but these drugs often have pleiotropic effects, and identifying patients who will benefit from them remains a major clinical challenge. Here we show that medulloblastomas driven by the transcription factor Gfi1 are exquisitely dependent on the enzyme lysine demethylase 1 (Kdm1a/Lsd1). We demonstrate that Lsd1 physically associates with Gfi1, and that these proteins cooperate to inhibit genes involved in neuronal commitment and differentiation. We also show that Lsd1 is essential for Gfi1-mediated transformation: Gfi1 proteins that cannot recruit Lsd1 are unable to drive tumorigenesis, and genetic ablation of Lsd1 markedly impairs tumor growth in vivo. Finally, pharmacological inhibitors of Lsd1 potently inhibit growth of Gfi1-driven tumors. These studies provide important insight into the mechanisms by which Gfi1 contributes to tumorigenesis, and identify Lsd1 inhibitors as promising therapeutic agents for Gfi1-driven medulloblastoma.


Subject(s)
Carcinogenesis/drug effects , Cerebellar Neoplasms/pathology , DNA-Binding Proteins/metabolism , Histone Demethylases/metabolism , Medulloblastoma/pathology , Transcription Factors/metabolism , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Proliferation/drug effects , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , DNA-Binding Proteins/genetics , Doxorubicin/therapeutic use , Gene Expression Regulation, Neoplastic , HEK293 Cells , Histone Demethylases/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , NIH 3T3 Cells , Neoplasm Transplantation , Oncogenic Viruses , Retroviridae , Transcription Factors/genetics
8.
J Neurooncol ; 141(1): 43-55, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30446899

ABSTRACT

PURPOSE: Atypical teratoid/rhabdoid tumor (ATRT) is a highly malignant brain tumor predominantly arising in infants. Mutations of SWI/SNF chromatin remodeling complex members SMARCB1/INI1 or (rarely) SMARCA4/Brg1 are the sole recurrent genetic lesions. Epigenetic studies revealed a large number of genes predicted to be affected by differential histone modifications in ATRT, but the role of these genes in the biology of ATRT remains uncertain. We therefore aimed at exploring the role of these genes in the detrimental effects of SMARCB1-deficiency. METHODS: The functional relevance of 1083 genes predicted to be affected by epigenetic alterations in ATRT was examined in vivo using a Drosophila melanogaster model of SMARCB1-deficiency. Human orthologues of genes whose knockdown modified the phenotype in the Gal4-UAS fly model were further examined in ATRT samples and SMARCB1-deficient rhabdoid tumor cells. RESULTS: Knockdown of Snr1, the fly orthologue of SMARCB1, resulted in a lethal phenotype and epigenetic alterations in the fly model. The lethal phenotype was shifted to later stages of development upon additional siRNA knockdown of 89 of 1083 genes screened in vivo. These included TGF-beta receptor signaling pathway related genes, e.g. CG10348, the fly orthologue of transcriptional regulator PRDM16. Subsequently, PRDM16 was found to be over-expressed in ATRT samples and knockdown of PRDM16 in SMARCB1-deficient rhabdoid tumor cells reduced proliferation. CONCLUSIONS: These results suggest that a subset of genes affected by differential histone modification in ATRT is involved in the detrimental effects of SMARCB1-deficiency and also relevant in the biology of ATRT.


Subject(s)
Brain Neoplasms/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Epigenesis, Genetic , Rhabdoid Tumor/genetics , SMARCB1 Protein/genetics , Teratoma/genetics , Transcription Factors/genetics , Animals , Cell Line, Tumor , Drosophila melanogaster , Histones/metabolism , Humans
10.
Dev Cell ; 44(6): 709-724.e6, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29551561

ABSTRACT

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mutations of CREBBP. By contrast, loss of Crebbp in GNPs during postnatal development synergizes with oncogenic activation of SHH signaling to drive MB growth, thereby explaining the enrichment of somatic CREBBP mutations in SHH MB of adult patients. Together, our data provide insights into time-sensitive consequences of CREBBP mutations and corresponding associations with human diseases.


Subject(s)
Acetyltransferases/metabolism , CREB-Binding Protein/metabolism , CREB-Binding Protein/physiology , Hedgehog Proteins/metabolism , Medulloblastoma/pathology , Mutation , Rubinstein-Taybi Syndrome/pathology , Adult , Animals , CREB-Binding Protein/genetics , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Female , Hedgehog Proteins/genetics , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , Mice, Knockout , Neurons , Phenotype , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/metabolism , Signal Transduction
11.
Nature ; 555(7696): 321-327, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29489754

ABSTRACT

Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.


Subject(s)
Genome, Human/genetics , Genomics , Mutation/genetics , Neoplasms/classification , Neoplasms/genetics , Adolescent , Adult , Child , Chromothripsis , Cohort Studies , DNA Copy Number Variations/genetics , Diploidy , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Molecular Targeted Therapy , Mutation Rate , Neoplasms/drug therapy , Tumor Suppressor Protein p53/genetics , Young Adult
12.
Nature ; 553(7686): 101-105, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29258295

ABSTRACT

Genomic sequencing has driven precision-based oncology therapy; however, the genetic drivers of many malignancies remain unknown or non-targetable, so alternative approaches to the identification of therapeutic leads are necessary. Ependymomas are chemotherapy-resistant brain tumours, which, despite genomic sequencing, lack effective molecular targets. Intracranial ependymomas are segregated on the basis of anatomical location (supratentorial region or posterior fossa) and further divided into distinct molecular subgroups that reflect differences in the age of onset, gender predominance and response to therapy. The most common and aggressive subgroup, posterior fossa ependymoma group A (PF-EPN-A), occurs in young children and appears to lack recurrent somatic mutations. Conversely, posterior fossa ependymoma group B (PF-EPN-B) tumours display frequent large-scale copy number gains and losses but have favourable clinical outcomes. More than 70% of supratentorial ependymomas are defined by highly recurrent gene fusions in the NF-κB subunit gene RELA (ST-EPN-RELA), and a smaller number involve fusion of the gene encoding the transcriptional activator YAP1 (ST-EPN-YAP1). Subependymomas, a distinct histologic variant, can also be found within the supratetorial and posterior fossa compartments, and account for the majority of tumours in the molecular subgroups ST-EPN-SE and PF-EPN-SE. Here we describe mapping of active chromatin landscapes in 42 primary ependymomas in two non-overlapping primary ependymoma cohorts, with the goal of identifying essential super-enhancer-associated genes on which tumour cells depend. Enhancer regions revealed putative oncogenes, molecular targets and pathways; inhibition of these targets with small molecule inhibitors or short hairpin RNA diminished the proliferation of patient-derived neurospheres and increased survival in mouse models of ependymomas. Through profiling of transcriptional enhancers, our study provides a framework for target and drug discovery in other cancers that lack known genetic drivers and are therefore difficult to treat.


Subject(s)
Enhancer Elements, Genetic/genetics , Ependymoma/drug therapy , Ependymoma/genetics , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks/genetics , Molecular Targeted Therapy , Oncogenes/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Ependymoma/classification , Ependymoma/pathology , Female , Humans , Mice , Precision Medicine , RNA Interference , Xenograft Model Antitumor Assays
13.
Nature ; 547(7663): 311-317, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28726821

ABSTRACT

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and 'enhancer hijacking' events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Subject(s)
DNA Mutational Analysis , Genome, Human/genetics , Medulloblastoma/classification , Medulloblastoma/genetics , Whole Genome Sequencing , Carcinogenesis/genetics , Carrier Proteins/genetics , Cohort Studies , DNA Methylation , Datasets as Topic , Epistasis, Genetic , Genomics , Humans , Molecular Targeted Therapy , Muscle Proteins/genetics , Mutation , Oncogenes/genetics , Transcription Factors/genetics , Wnt Proteins/genetics
14.
Nat Genet ; 49(1): 65-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27869826

ABSTRACT

Extensive prior research focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearrangement of cis-regulatory elements (CREs) remains unclear. Here we present a framework for inferring cancer-related gene overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer is associated with recurrent deletions in cis, and we present evidence supporting a tumor-promoting role. We additionally pursued cancer-type-specific analyses and uncovered IGF2 as a target for enhancer hijacking in colorectal cancer. Recurrent tandem duplications intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer.


Subject(s)
DNA Copy Number Variations/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Insulin Receptor Substrate Proteins/genetics , Insulin-Like Growth Factor II/genetics , Neoplasms/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Promoter Regions, Genetic
15.
Genome Res ; 26(8): 1034-46, 2016 08.
Article in English | MEDLINE | ID: mdl-27034506

ABSTRACT

For a long time, it has been assumed that the only role of sperm at fertilization is to introduce the male genome into the egg. Recently, ideas have emerged that the epigenetic state of the sperm nucleus could influence transcription in the embryo. However, conflicting reports have challenged the existence of epigenetic marks on sperm genes, and there are no functional tests supporting the role of sperm epigenetic marking on embryonic gene expression. Here, we show that sperm is epigenetically programmed to regulate embryonic gene expression. By comparing the development of sperm- and spermatid-derived frog embryos, we show that the programming of sperm for successful development relates to its ability to regulate transcription of a set of developmentally important genes. During spermatid maturation into sperm, these genes lose H3K4me2/3 and retain H3K27me3 marks. Experimental removal of these epigenetic marks at fertilization de-regulates gene expression in the resulting embryos in a paternal chromatin-dependent manner. This demonstrates that epigenetic instructions delivered by the sperm at fertilization are required for correct regulation of gene expression in the future embryos. The epigenetic mechanisms of developmental programming revealed here are likely to relate to the mechanisms involved in transgenerational transmission of acquired traits. Understanding how parental experience can influence development of the progeny has broad potential for improving human health.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/genetics , Spermatozoa/metabolism , Animals , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Histone-Lysine N-Methyltransferase/biosynthesis , Histones , Humans , Male , Ranidae/genetics , Ranidae/growth & development , Spermatids/growth & development , Spermatids/metabolism , Spermatozoa/growth & development
16.
Cancer Cell ; 29(3): 379-393, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26923874

ABSTRACT

Atypical teratoid/rhabdoid tumor (ATRT) is one of the most common brain tumors in infants. Although the prognosis of ATRT patients is poor, some patients respond favorably to current treatments, suggesting molecular inter-tumor heterogeneity. To investigate this further, we genetically and epigenetically analyzed 192 ATRTs. Three distinct molecular subgroups of ATRTs, associated with differences in demographics, tumor location, and type of SMARCB1 alterations, were identified. Whole-genome DNA and RNA sequencing found no recurrent mutations in addition to SMARCB1 that would explain the differences between subgroups. Whole-genome bisulfite sequencing and H3K27Ac chromatin-immunoprecipitation sequencing of primary tumors, however, revealed clear differences, leading to the identification of subgroup-specific regulatory networks and potential therapeutic targets.


Subject(s)
Epigenesis, Genetic/genetics , Rhabdoid Tumor/genetics , Teratoma/genetics , Brain Neoplasms/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Humans , Mutation/genetics , SMARCB1 Protein , Transcription Factors/genetics
17.
Nature ; 530(7588): 57-62, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26814967

ABSTRACT

Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Here, using H3K27ac and BRD4 chromatin immunoprecipitation followed by sequencing (ChIP-seq) coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-seq, that is responsible for subgroup divergence, and implicates candidate cells of origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Medulloblastoma/classification , Medulloblastoma/pathology , Transcription Factors/metabolism , Animals , Cerebellar Neoplasms/classification , Female , Gene Regulatory Networks/genetics , Genes, Neoplasm/genetics , Genes, Reporter/genetics , Humans , Male , Medulloblastoma/genetics , Mice , Reproducibility of Results , Zebrafish/genetics
18.
Science ; 350(6261): aab2006, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26449473

ABSTRACT

A father's lifetime experiences can be transmitted to his offspring to affect health and development. However, the mechanisms underlying paternal epigenetic transmission are unclear. Unlike in somatic cells, there are few nucleosomes in sperm, and their function in epigenetic inheritance is unknown. We generated transgenic mice in which overexpression of the histone H3 lysine 4 (H3K4) demethylase KDM1A (also known as LSD1) during spermatogenesis reduced H3K4 dimethylation in sperm. KDM1A overexpression in one generation severely impaired development and survivability of offspring. These defects persisted transgenerationally in the absence of KDM1A germline expression and were associated with altered RNA profiles in sperm and offspring. We show that epigenetic inheritance of aberrant development can be initiated by histone demethylase activity in developing sperm, without changes to DNA methylation at CpG-rich regions.


Subject(s)
Congenital Abnormalities/genetics , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Histone Demethylases/metabolism , Histones/metabolism , Spermatogenesis/genetics , Spermatozoa/growth & development , Animals , CpG Islands , DNA Methylation , Female , Histone Demethylases/genetics , Male , Methylation , Mice , Mice, Transgenic , RNA, Messenger/metabolism , Spermatozoa/enzymology
19.
Nature ; 511(7510): 428-34, 2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25043047

ABSTRACT

Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.


Subject(s)
DNA-Binding Proteins/genetics , Enhancer Elements, Genetic/genetics , Genomic Structural Variation/genetics , Medulloblastoma/genetics , Oncogenes/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Child , Chromosomes, Human, Pair 9/genetics , DNA-Binding Proteins/metabolism , Humans , Medulloblastoma/classification , Medulloblastoma/pathology , Mice , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism
20.
Science ; 345(6198): 1255903, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25011554

ABSTRACT

Adverse prenatal environments can promote metabolic disease in offspring and subsequent generations. Animal models and epidemiological data implicate epigenetic inheritance, but the mechanisms remain unknown. In an intergenerational developmental programming model affecting F2 mouse metabolism, we demonstrate that the in utero nutritional environment of F1 embryos alters the germline DNA methylome of F1 adult males in a locus-specific manner. Differentially methylated regions are hypomethylated and enriched in nucleosome-retaining regions. A substantial fraction is resistant to early embryo methylation reprogramming, which may have an impact on F2 development. Differential methylation is not maintained in F2 tissues, yet locus-specific expression is perturbed. Thus, in utero nutritional exposures during critical windows of germ cell development can impact the male germline methylome, associated with metabolic disease in offspring.


Subject(s)
DNA Methylation , Fetal Nutrition Disorders/metabolism , Prenatal Exposure Delayed Effects , Spermatozoa/metabolism , Animals , Caloric Restriction , Epigenesis, Genetic , Female , Fetal Nutrition Disorders/genetics , Insulin/metabolism , Insulin Secretion , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred ICR , Nucleosomes/metabolism , Pregnancy , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...