Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Signal ; 10(499)2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28974650

ABSTRACT

Ewing's sarcoma (ES) is a rare and highly malignant cancer that grows in the bones or surrounding tissues mostly affecting adolescents and young adults. A chimeric fusion between the RNA binding protein EWS and the ETS family transcription factor FLI1 (EWS-FLI1), which is generated from a chromosomal translocation, is implicated in driving most ES cases by modulation of transcription and alternative splicing. The small-molecule YK-4-279 inhibits EWS-FLI1 function and induces apoptosis in ES cells. We aimed to identify both the underlying mechanism of the drug and potential combination therapies that might enhance its antitumor activity. We tested 69 anticancer drugs in combination with YK-4-279 and found that vinca alkaloids exhibited synergy with YK-4-279 in five ES cell lines. The combination of YK-4-279 and vincristine reduced tumor burden and increased survival in mice bearing ES xenografts. We determined that independent drug-induced events converged to cause this synergistic therapeutic effect. YK-4-279 rapidly induced G2-M arrest, increased the abundance of cyclin B1, and decreased EWS-FLI1-mediated generation of microtubule-associated proteins, which rendered cells more susceptible to microtubule depolymerization by vincristine. YK-4-279 reduced the expression of the EWS-FLI1 target gene encoding the ubiquitin ligase UBE2C, which, in part, contributed to the increase in cyclin B1. YK-4-279 also increased the abundance of proapoptotic isoforms of MCL1 and BCL2, presumably through inhibition of alternative splicing by EWS-FLI1, thus promoting cell death in response to vincristine. Thus, a combination of vincristine and YK-4-279 might be therapeutically effective in ES patients.


Subject(s)
Drug Resistance, Neoplasm/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Indoles/pharmacology , M Phase Cell Cycle Checkpoints/drug effects , Oncogene Proteins, Fusion/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , RNA-Binding Protein EWS/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Vincristine/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cyclin B1/genetics , Cyclin B1/metabolism , Drug Resistance, Neoplasm/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Humans , M Phase Cell Cycle Checkpoints/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/pathology , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
2.
Proc Natl Acad Sci U S A ; 112(11): E1307-16, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25737553

ABSTRACT

The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.


Subject(s)
Alternative Splicing/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Signal Transduction/genetics , Alternative Splicing/drug effects , Base Sequence , Cell Line, Tumor , Exons/genetics , Humans , Indoles , Introns/genetics , Oncogene Proteins, Fusion/genetics , Protein Binding/drug effects , Protein Isoforms/metabolism , Proto-Oncogene Protein c-fli-1/genetics , RNA Processing, Post-Transcriptional/drug effects , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Signal Transduction/drug effects , Spliceosomes/drug effects , Spliceosomes/metabolism , Telomerase/metabolism
3.
Oncotarget ; 5(2): 338-50, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24481407

ABSTRACT

Transcription factors have long been deemed 'undruggable' targets for therapeutics. Enhanced recognition of protein biochemistry as well as the need to have more targeted approaches to treat cancer has rendered transcription factors approachable for therapeutic development. Since transcription factors lack enzymatic domains, the specific targeting of these proteins has unique challenges. One challenge is the hydrophobic microenvironment that affects small molecules gaining access to block protein interactions. The most attractive transcription factors to target are those formed from tumor specific chromosomal translocations that are validated oncogenic driver proteins. EWS-FLI1 is a fusion protein that results from the pathognomonic translocation of Ewing sarcoma (ES). Our past work created the small molecule YK-4-279 that blocks EWS-FLI1 from interacting with RNA Helicase A (RHA). To fulfill long-standing promise in the field by creating a clinically useful drug, steps are required to allow for in vivo administration. These investigations identify the need for continuous presence of the small molecule protein-protein inhibitor for a period of days. We describe the pharmacokinetics of YK-4-279 and its individual enantiomers. In vivo studies confirm prior in vitro experiments showing (S)-YK-4-279 as the EWS-FLI1 specific enantiomer demonstrating both induction of apoptosis and reduction of EWS-FLI1 regulated caveolin-1 protein. We have created the first rat xenograft model of ES, treated with (S)-YK-4-279 dosing based upon PK modeling leading to a sustained complete response in 2 of 6 ES tumors. Combining laboratory studies, pharmacokinetic measurements, and modeling has allowed us to create a paradigm that can be optimized for in vivo systems using both in vitro data and pharmacokinetic simulations. Thus, (S)-YK-4-279 as a small molecule drug is ready for continued development towards a first-in-human, first-in-class, clinical trial.


Subject(s)
Indoles/pharmacokinetics , Oncogene Proteins, Fusion/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , RNA-Binding Protein EWS/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/metabolism , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Indoles/blood , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Sarcoma, Ewing/genetics , Sarcoma, Ewing/pathology , Transcription, Genetic , Xenograft Model Antitumor Assays
4.
Clin Orthop Relat Res ; 472(3): 874-82, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23716114

ABSTRACT

BACKGROUND: Most synovial sarcomas contain a chromosomal translocation t(X;18), which results in the formation of an oncoprotein SS18-SSX critical to the viability of synovial sarcoma. QUESTIONS/PURPOSES: We (1) established and characterized three novel synovial sarcoma cell lines and asked (2) whether inhibition of SS18-SSX1 decreases cell viability in these cell lines; and (3) whether reduction in viability after SS18-SSX1 knockdown is caused by apoptosis. After identifying a specific posttranscriptional splice variant in our cell lines, we asked (4) whether this provides a survival benefit in synovial sarcoma. METHODS: Cells lines were characterized. SS18-SSX1 knockdown was achieved using a shRNA system. Cell viability was assessed by WST-1 analysis and apoptosis examined by caspase-3 activity. RESULTS: We confirmed the SS18-SSX1 translocation in all cell lines and identified a consistent splicing variant. We achieved successful knockdown of SS18-SSX1 and with this saw a significant reduction in cell viability. Decreased viability was a result of increased apoptosis. Reintroduction of the exon 8 sequence into cells reduced cell viability in all cell lines. CONCLUSIONS: We confirmed the presence of the SS18-SSX1 translocation in our cell lines and its importance in the survival of synovial sarcoma. We have also demonstrated that reduction in cell viability is related to an increase in apoptosis. In addition, we have identified a potential mediator of SS18-SSX function in exon 8. CLINICAL RELEVANCE: SS18-SSX represents a tumor-specific target in synovial sarcoma. Exploitation of SS18-SSX and its protein partners will allow us to develop potent tumor-specific therapeutic agents.


Subject(s)
Apoptosis , Neoplasm Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Sarcoma, Synovial/metabolism , Adult , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival , Child , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins/genetics , RNA Interference , Repressor Proteins/genetics , Sarcoma, Synovial/genetics , Sarcoma, Synovial/pathology , Signal Transduction , Translocation, Genetic
5.
Mol Cancer Ther ; 12(11): 2591-600, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23966622

ABSTRACT

Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly Friend leukemia integration 1 (FLI1). The EWS-FLI1 fusion protein acts in a positive feedback loop to maintain the expression of PARP-1, which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy on Ewing sarcomas. In proliferation assays, the Ewing sarcoma cell lines RD-ES and SK-N-MC were much more sensitive than non-Ewing sarcoma cell lines to the PARP-1 inhibitor olaparib (Ola; IC50 0.5-1 µmol/L vs. >5 µmol/L) and to radiation (IC50 2-4 Gy vs. >6 Gy). PARP-1 inhibition with short hairpin RNA (shRNA) or Ola sensitized Ewing sarcoma cells, but not non-Ewing sarcoma cells, to radiation therapy in both proliferation and colony formation assays. Using the Comet assay, radiation of Ewing sarcoma cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hour (mean tail moment 36-54 vs. 26-28) and sustained DNA damage at 24 hours (24-29 vs. 6-8). This DNA damage led to a 2.9- to 4.0-fold increase in apoptosis and a 1.6- to 2.4-fold increase in cell death. The effect of PARP-1 inhibition and radiation therapy on Ewing sarcoma cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of radiation therapy (4 Gy), when combined with PARP-1 inhibition, stopped the growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in Ewing sarcomas amplifies the level and duration of DNA damage caused by radiation therapy, leading to synergistic increases in apoptosis and cell death in a EWS-FLI1-dependent manner.


Subject(s)
Cell Death , DNA Damage , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/radiotherapy , Animals , Cell Line, Tumor , Combined Modality Therapy , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/genetics , Proto-Oncogene Protein c-fli-1/metabolism , RNA, Small Interfering/pharmacology , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Xenograft Model Antitumor Assays
6.
Exp Cell Res ; 319(1): 1-11, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23018179

ABSTRACT

Identification of Protein Tyrosine Phosphatase (PTP) substrates is critical in understanding cellular role in normal cells as well as cancer cells. We have previously shown that reduction of PTPL1 protein levels in Ewings sarcoma (ES) inhibit cell growth and tumorigenesis. Therefore, we sought to identify novel PTPL1 substrates that may be important for tumorigenesis. In this current work, we demonstrated that mouse embryonic fibroblasts without PTPL1 catalytic activity fail to form foci when transfected with oncogenes. We proved that catalytic activity of PTPL1 is important for ES cell growth. Using a substrate-trapping mutant of PTPL1 we identified putative PTPL1 substrates by mass-spectrometry. One of these putative substrates was characterized as Valosin Containing Protein (VCP/p97). Using multiple biochemical assays we validated VCP as a novel substrate of PTPL1. We also provide evidence that tyrosine phosphorylation of VCP might be important for its midbody localization during cytokinesis. In conclusion, our work identifies VCP as a new substrate for PTPL1, which may be important in cellular transformation. Our investigation link an oncogenic transcription factor EWS-FLI1, with a key transcriptional target protein tyrosine phosphatase PTPL1, and its substrate VCP. Given our observation that PTPL1 catalytic activity is important for cell transformation, our results may also suggest that VCP regulation by PTPL1 might be important for tumorigenesis.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 13/metabolism , Adenosine Triphosphatases/genetics , Animals , Bone Neoplasms/enzymology , Bone Neoplasms/pathology , Catalysis , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cells, Cultured , Fibroblasts , HEK293 Cells , Humans , Mice , Mice, Mutant Strains , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 13/genetics , Sarcoma, Ewing/enzymology , Sarcoma, Ewing/pathology , Substrate Specificity/physiology , Valosin Containing Protein
7.
Front Oncol ; 2: 107, 2012.
Article in English | MEDLINE | ID: mdl-22973553

ABSTRACT

Ewing Sarcoma (ES) is associated with a balanced chromosomal translocation that in most cases leads to the expression of the oncogenic fusion protein and transcription factor EWS-FLI1. EWS-FLI1 has been shown to be crucial for ES cell survival and tumor growth. However, its regulation is still enigmatic. To date, no functionally significant post-translational modifications of EWS-FLI1 have been shown. Since ES are sensitive to histone deacetylase inhibitors (HDI), and these inhibitors are advancing in clinical trials, we sought to identify if EWS-FLI1 is directly acetylated. We convincingly show acetylation of the C-terminal FLI1 (FLI1-CTD) domain, which is the DNA binding domain of EWS-FLI1. In vitro acetylation studies showed that acetylated FLI1-CTD has higher DNA binding activity than the non-acetylated protein. Over-expression of PCAF or treatment with HDI increased the transcriptional activity of EWS-FLI1, when co-expressed in Cos7 cells. However, our data that evaluates the acetylation of full-length EWS-FLI1 in ES cells remains unclear, despite creating acetylation specific antibodies to four potential acetylation sites. We conclude that EWS-FLI1 may either gain access to chromatin as a result of histone acetylation or undergo regulation by direct acetylation. These data should be considered when patients are treated with HDAC inhibitors. Further investigation of this phenomenon will reveal if this potential acetylation has an impact on tumor response.

8.
Oncotarget ; 3(2): 172-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22383402

ABSTRACT

Oncogenic fusion proteins, such as EWS-FLI1, are excellent therapeutic targets as they are only located within the tumor. However, there are currently no agents targeted toward transcription factors, which are often considered to be 'undruggable.' A considerable body of evidence is accruing that refutes this claim based upon the intrinsic disorder of transcription factors. Our previous studies show that RNA Helicase A (RHA) enhances the oncogenesis of EWS-FLI1, a putative intrinsically disordered protein. Interruption of this protein-protein complex by small molecule inhibitors validates this interaction as a unique therapeutic target. Single enantiomer activity from a chiral compound has been recognized as strong evidence for specificity in a small molecule-protein interaction. Our compound, YK-4-279, has a chiral center and can be separated into two enantiomers by chiral HPLC. We show that there is a significant difference in activity between the two enantiomers. (S)-YK-4-279 is able to disrupt binding between EWS-FLI1 and RHA in an immunoprecipitation assay and blocks the transcriptional activity of EWS-FLI1, while (R)-YK-4-279 cannot. Enantiospecific effects are also established in cytotoxicity assays and caspase assays, where up to a log-fold difference is seen between (S)-YK-4-279 and the racemic YK-4-279. Our findings indicate that only one enantiomer of our small molecule is able to specifically target a protein-protein interaction. This work is significant for its identification of a single enantiomer effect upon a protein interaction suggesting that small molecule targeting of intrinsically disordered proteins can be specific. Furthermore, proving YK-4-279 has only one functional enantiomer will be helpful in moving this compound towards clinical trials.


Subject(s)
Indoles/pharmacology , Oncogene Proteins, Fusion/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , RNA-Binding Protein EWS/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Animals , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , Rats , Rats, Sprague-Dawley , Stereoisomerism , Transcription Factors/metabolism , Transcriptional Activation , Transplantation, Heterologous
9.
Cell Cycle ; 10(19): 3397-408, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21926473

ABSTRACT

Ewing tumor is driven by the oncogenic EWS-FLI1 fusion protein that functions as an aberrant transcription factor. The identification of EWS-FLI1 protein partners is essential to enhance its vulnerability as a therapeutic target. We utilized phage display library screening against recombinant EWS-FLI1 protein. We identified 27 unique Ewing sarcoma binding peptides. The cytotoxicity evaluation of these peptides with in EWS-FLI1 containing cell lines yielded one potent peptide called ESAP1 (TMRGKKKRTRAN). ESAP1 binds EWS-FLI1 with 0.202 micromolar affinity as measured in surface plasmon resonance. The minimal interaction region of ESAP1 is characterized and found that the lysine residues are critical for cellular cytotoxicity. ESAP1 reduces the transcriptional activity of EWS-FLI1 as well as disrupts cell cycle kinetics in Ewing Tumor cells. These findings provide both a novel experimental probe and a potential therapeutic scaffold for Ewing Tumor.


Subject(s)
Oncogene Proteins, Fusion/metabolism , Peptides/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , Sarcoma, Ewing/pathology , Amino Acid Sequence , Cell Cycle Checkpoints , Cell Line, Tumor , Humans , Kinetics , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Peptide Library , Protein Binding , Proto-Oncogene Protein c-fli-1/antagonists & inhibitors , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/genetics , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Surface Plasmon Resonance , Transcriptional Activation
10.
Clin Cancer Res ; 16(16): 4077-83, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20547696

ABSTRACT

Targeted therapy for cancer, which is specifically directed toward the cancer without any potential for effects outside of controlling the tumor, is a gold standard for treatment. Ewing's sarcoma contains the potential target EWS-FLI1, as a result of a pathognomonic chromosomal translocation. The EWS-FLI1 fusion protein includes the EWS domain, a potent transcriptional activator alongside the highly conserved FLI1 ets DNA-binding domain. Because of the combination of these domains, the EWS-FLI1 fusion protein acts as an aberrant transcription factor whose expression results in cellular transformation. EWS-FLI1 functions by binding to normal cellular protein partners in transcription and splicing, similar to how a virus would corrupt normal cellular machinery for virion production. Therefore, understanding the protein-protein interactions of EWS-FLI1 and the pathways that are regulated by these partnerships will inform both oncogenesis and therapeutics. This review describes the known protein partners and transcriptional targets of EWS-FLI1, while proposing strategies for exploiting these partnerships with targeted therapy.


Subject(s)
Oncogene Proteins, Fusion/genetics , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Transcription Factors/genetics , Animals , Gene Expression Regulation, Neoplastic , Humans , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Sarcoma, Ewing/pathology , Signal Transduction/physiology , Transcription Factors/metabolism , Transcription, Genetic , Translocation, Genetic
11.
Nat Med ; 15(7): 750-6, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19584866

ABSTRACT

Many sarcomas and leukemias carry nonrandom chromosomal translocations encoding tumor-specific mutant fusion transcription factors that are essential to their molecular pathogenesis. Ewing's sarcoma family tumors (ESFTs) contain a characteristic t(11;22) translocation leading to expression of the oncogenic fusion protein EWS-FLI1. EWS-FLI1 is a disordered protein that precludes standard structure-based small-molecule inhibitor design. EWS-FLI1 binding to RNA helicase A (RHA) is important for its oncogenic function. We therefore used surface plasmon resonance screening to identify compounds that bind EWS-FLI1 and might block its interaction with RHA. YK-4-279, a derivative of the lead compound from the screen, blocks RHA binding to EWS-FLI1, induces apoptosis in ESFT cells and reduces the growth of ESFT orthotopic xenografts. These findings provide proof of principle that inhibiting the interaction of mutant cancer-specific transcription factors with the normal cellular binding partners required for their oncogenic activity provides a promising strategy for the development of uniquely effective, tumor-specific anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , DEAD-box RNA Helicases/metabolism , Indoles/pharmacology , Neoplasm Proteins/metabolism , Oncogene Proteins, Fusion/antagonists & inhibitors , Sarcoma, Ewing/drug therapy , Transcription Factors/antagonists & inhibitors , Animals , COS Cells , Caspase 3/metabolism , Cells, Cultured , Chlorocebus aethiops , Humans , Mice , Proto-Oncogene Protein c-fli-1 , RNA-Binding Protein EWS , Sarcoma, Ewing/pathology , Surface Plasmon Resonance , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL