Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Article in English | MEDLINE | ID: mdl-38652069

ABSTRACT

We report 5 children with bone marrow failure (BMF) after primary varicella zoster virus (VZV) infection or VZV vaccination, highlighting the highly variable course. Two patients were treated with intravenous immunoglobulins; one had a slow hematologic recovery, and the other was rescued by allogeneic hematopoietic stem cell transplantation (HSCT). Of the 2 patients treated with immunosuppressive therapy with antithymocyte globulin and cyclosporine, one had a complete response, and the other was transplanted for nonresponse. One patient underwent a primary allograft. All patients are alive. This study demonstrated that VZV-associated BMF is a life-threatening disorder that often requires HSCT.

3.
Int J Mol Sci ; 25(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612914

ABSTRACT

Hematopoietic reconstitution after hematopoietic stem cell transplantation (HSCT) is influenced by the number of transplanted cells. However, under certain conditions donor cell counts are limited and impair clinical outcome. Hematopoietic stem and progenitor cell (HSPC) expansion prior to HSCT is a widely used method to achieve higher donor cell counts and minimize transplantation-related risks such as graft failure or delayed engraftment. Still, expansion in a non-physiological environment can trigger cell death mechanisms and hence counteract the desired effect. We have shown earlier that during HSCT a relevant amount of HSPCs were lost due to apoptosis and that cell death inhibition in donor HSPCs improved engraftment in xenotransplantation experiments. Here, we assessed the effect of combined ex vivo expansion and cell death inhibition on HSPC yield and their reconstitution potential in vivo. During expansion with cytokines and the small molecule inhibitor StemRegenin 1, concomitant lentiviral overexpression of antiapoptotic BCL-XL resulted in an increased yield of transduced HSPCs. Importantly, BCL-XL overexpression enhanced the reconstitution potential of HSPCs in xenotransplantation experiments in vivo. In contrast, treatment with caspase and necroptosis inhibitors had no favorable effects on HSPC yields nor on cell viability. We postulate that overexpression of antiapoptotic BCL-XL, both during ex vivo expansion and transplantation, is a promising approach to improve the outcome of HSCT in situations with limited donor cell numbers. However, such apoptosis inhibition needs to be transient to avoid long-term sequelae like leukemia.


Subject(s)
Apoptosis , Lentivirus , Transplantation, Heterologous , Lentivirus/genetics , Hematopoietic Stem Cells , Cell Death
5.
Exp Hematol ; 133: 104207, 2024 May.
Article in English | MEDLINE | ID: mdl-38522505

ABSTRACT

Myelodysplastic/myeloproliferative diseases of childhood cause a relevant disease burden, and many of these diseases may have a fatal course. The use of next-generation sequencing (NGS) has led to the identification of novel genetic variants in patients with these diseases, advancing our understanding of the underlying pathophysiology. However, novel mutations can often only be interpreted as variants of unknown significance (VUS), hindering adequate diagnosis and the use of a targeted therapy. To improve variant interpretation and test targeted therapies in a preclinical setting, we are using a rapid zebrafish embryo model that allows functional evaluation of the novel variant and possible therapeutic approaches within days. Thereby, we accelerate the translation from genetic findings to treatment options. Here, we establish this workflow on a novel in-frame tandem duplication in NRAS (c.192_227dup; p.G75_E76insDS65_G75) identified by Sanger sequencing in a 2.5-year-old patient with an unclassifiable myelodysplastic/myeloproliferative neoplasm (MDS/MPN-U). We show that this variant results in a myeloproliferative phenotype in zebrafish embryos with expansion of immature myeloid cells in the caudal hematopoietic tissue, which can be reversed by MEK inhibition. Thus, we could reclassify the variant from likely pathogenic to pathogenic using the American College of Medical Genetics (ACMG) criteria.


Subject(s)
GTP Phosphohydrolases , Membrane Proteins , Zebrafish , Humans , Animals , Zebrafish/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Child, Preschool , Myelodysplastic-Myeloproliferative Diseases/genetics , Myelodysplastic-Myeloproliferative Diseases/pathology , Gene Duplication , Male , Tandem Repeat Sequences , Female , High-Throughput Nucleotide Sequencing
6.
Leukemia ; 38(1): 136-148, 2024 01.
Article in English | MEDLINE | ID: mdl-37945692

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is an aggressive hematopoietic disorder of infancy and early childhood driven by constitutively active RAS signaling and characterized by abnormal proliferation of the granulocytic-monocytic blood cell lineage. Most JMML patients require hematopoietic stem cell transplantation for cure, but the risk of relapse is high for some JMML subtypes. Azacitidine was shown to effectively reduce leukemic burden in a subset of JMML patients. However, variable response rates to azacitidine and the risk of drug resistance highlight the need for novel therapeutic approaches. Since RAS signaling is known to interfere with the intrinsic apoptosis pathway, we combined various BH3 mimetic drugs with azacitidine in our previously established patient-derived xenograft model. We demonstrate that JMML cells require both MCL-1 and BCL-XL for survival, and that these proteins can be effectively targeted by azacitidine and BH3 mimetic combination treatment. In vivo azacitidine acts via downregulation of antiapoptotic MCL-1 and upregulation of proapoptotic BH3-only. The combination of azacitidine with BCL-XL inhibition was superior to BCL-2 inhibition in eliminating JMML cells. Our findings emphasize the need to develop clinically applicable MCL-1 or BCL-XL inhibitors in order to enable novel combination therapies in JMML refractory to standard therapy.


Subject(s)
Azacitidine , Leukemia, Myelomonocytic, Juvenile , Humans , Child, Preschool , Azacitidine/pharmacology , Azacitidine/therapeutic use , Leukemia, Myelomonocytic, Juvenile/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , bcl-X Protein/metabolism , Apoptosis , Cell Line, Tumor
7.
Haematologica ; 109(2): 422-430, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37584291

ABSTRACT

Monosomy 7 is the most common cytogenetic abnormality in pediatric myelodysplastic syndrome (MDS) and associated with a high risk of disease progression. However, in young children, spontaneous loss of monosomy 7 with concomitant hematologic recovery has been described, especially in the presence of germline mutations in SAMD9 and SAMD9L genes. Here, we report on our experience of close surveillance instead of upfront hematopoietic stem cell transplantation (HSCT) in seven patients diagnosed with SAMD9L syndrome and monosomy 7 at a median age of 0.6 years (range, 0.4-2.9). Within 14 months from diagnosis, three children experienced spontaneous hematological remission accompanied by a decrease in monosomy 7 clone size. Subclones with somatic SAMD9L mutations in cis were identified in five patients, three of whom attained hematological remission. Two patients acquired RUNX1 and EZH2 mutations during the observation period, of whom one progressed to myelodysplastic syndrome with excess of blasts (MDS-EB). Four patients underwent allogeneic HSCT at a median time of 26 months (range, 14-40) from diagnosis for MDSEB, necrotizing granulomatous lymphadenitis, persistent monosomy 7, and severe neutropenia. At last follow-up, six patients were alive, while one passed away due to transplant-related causes. These data confirm previous observations that monosomy 7 can be transient in young children with SAMD9L syndrome. However, they also indicate that delaying HSCT poses a substantial risk of severe infection and disease progression. Finally, surveillance of patients with SAMD9L syndrome and monosomy 7 is critical to define the evolving genetic landscape and to determine the appropriate timing of HSCT (clinicaltrials gov. Identifier: NCT00662090).


Subject(s)
Chromosome Deletion , Myelodysplastic Syndromes , Humans , Child , Child, Preschool , Infant , Remission, Spontaneous , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Disease Progression , Transcription Factors/genetics , Monosomy , Chromosomes, Human, Pair 7/genetics , Intracellular Signaling Peptides and Proteins/genetics
8.
Br J Haematol ; 204(2): 595-605, 2024 02.
Article in English | MEDLINE | ID: mdl-37945316

ABSTRACT

Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Neurofibromatosis 1 , Child , Humans , Leukemia, Myelomonocytic, Juvenile/genetics , Neurofibromatosis 1/genetics , Mutation , Signal Transduction , Genes, Tumor Suppressor
9.
Cancers (Basel) ; 15(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38067298

ABSTRACT

GATA2 deficiency is a heterogeneous, multisystem disorder associated with a high risk of developing myelodysplastic syndrome (MDS) and the progression to acute myeloid leukemia. The mechanisms underlying malignant transformation in GATA2 deficiency remain poorly understood, necessitating predictive markers to assess an individual's risk of progression and guide therapeutic decisions. In this study, we performed a systematic analysis of bone marrow biopsies from 57 pediatric MDS patients. Focusing on hematopoiesis and the hematopoietic niche, including its microenvironment, we used multiplex immunofluorescence combined with multispectral imaging, gene expression profiling, and multiplex RNA in situ hybridization. Patients with a GATA2 deficiency exhibited a dysregulated GATA2 transcriptional network. Disease progression (GATA2-EB, n = 6) was associated with increased GATA2 mRNA levels, restored expression of the GATA2 target EZH2, and increased H3K27me3. GATA2-EB was further characterized by the high expression of the anti-apoptotic protein BCL2, a feature absent in children with a GATA2 deficiency and refractory cytopenia of childhood (GATA2-RCC, n = 24) or other pediatric MDS subgroups (RCC, n = 17; MDS-EB, n = 10). The multispectral imaging analysis of additional BCL2 family members revealed significantly elevated Mediators of Apoptosis Combinatorial (MAC) scores in GATA2-EB patients. Taken together, our findings highlight the potential drivers of disease progression in GATA2 deficiency, particularly increased histone trimethylation and dysregulated apoptosis. Furthermore, upregulated BCL2 and EZH2 and increased MAC scores provide a strong rationale for the use of venetoclax and azacitidine in therapeutic regimens for GATA2-EB.

11.
Blood ; 142(13): 1113-1130, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37369082

ABSTRACT

Although absence of interleukin-7 (IL-7) signaling completely abrogates T and B lymphopoiesis in mice, patients with severe combined immunodeficiency caused by mutations in the IL-7 receptor α chain (IL-7Rα) still generate peripheral blood B cells. Consequently, human B lymphopoiesis has been thought to be independent of IL-7 signaling. Using flow cytometric analysis and single-cell RNA sequencing of bone marrow samples from healthy controls and patients who are IL-7Rα deficient, in combination with in vitro modeling of human B-cell differentiation, we demonstrate that IL-7R signaling plays a crucial role in human B lymphopoiesis. IL-7 drives proliferation and expansion of early B-cell progenitors but not of pre-BII large cells and has a limited role in the prevention of cell death. Furthermore, IL-7 guides cell fate decisions by enhancing the expression of BACH2, EBF1, and PAX5, which jointly orchestrate the specification and commitment of early B-cell progenitors. In line with this observation, early B-cell progenitors of patients with IL-7Rα deficiency still expressed myeloid-specific genes. Collectively, our results unveil a previously unknown role for IL-7 signaling in promoting the B-lymphoid fate and expanding early human B-cell progenitors while defining important differences between mice and humans. Our results have implications for hematopoietic stem cell transplantation strategies in patients with T- B+ severe combined immunodeficiency and provide insights into the role of IL-7R signaling in leukemogenesis.


Subject(s)
Interleukin-7 , Severe Combined Immunodeficiency , Humans , Animals , Mice , Interleukin-7/metabolism , Receptors, Interleukin-7/genetics , Cell Differentiation , Hematopoiesis
12.
Genet Med ; 25(8): 100875, 2023 08.
Article in English | MEDLINE | ID: mdl-37149759

ABSTRACT

PURPOSE: Clinical checklists are the standard of care to determine whether a child with cancer shows indications for genetic testing. Nevertheless, the efficacy of these tests to reliably detect genetic cancer predisposition in children with cancer is still insufficiently investigated. METHODS: We assessed the validity of clinically recognizable signs to identify cancer predisposition by correlating a state-of-the-art clinical checklist to the corresponding exome sequencing analysis in an unselected single-center cohort of 139 child-parent data sets. RESULTS: In total, one-third of patients had a clinical indication for genetic testing according to current recommendations, and 10.1% (14 of 139) of children harbored a cancer predisposition. Of these, 71.4% (10 of 14) were identified through the clinical checklist. In addition, >2 clinical findings in the checklist increased the likelihood to identifying genetic predisposition from 12.5% to 50%. Furthermore, our data revealed a high rate of genetic predisposition (40%, 4 of 10) in myelodysplastic syndrome cases, while no (likely) pathogenic variants were identified in the sarcoma and lymphoma group. CONCLUSION: In summary, our data show high checklist sensitivity, particularly in identifying childhood cancer predisposition syndromes. Nevertheless, the checklist used here also missed 29% of children with a cancer predisposition, highlighting the drawbacks of sole clinical evaluation and underlining the need for routine germline sequencing in pediatric oncology.


Subject(s)
Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Child , Genetic Predisposition to Disease , Early Detection of Cancer , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/pathology , Genetic Testing , Genotype , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics , Germ-Line Mutation/genetics
14.
Eur J Med Genet ; 66(4): 104727, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36775010

ABSTRACT

Although hematologic malignancies (HM) are no longer considered exclusively sporadic, additional awareness of familial cases has yet to be created. Individuals carrying a (likely) pathogenic germline variant (e.g., in ETV6, GATA2, SAMD9, SAMD9L, or RUNX1) are at an increased risk for developing HM. Given the clinical and psychological impact associated with the diagnosis of a genetic predisposition to HM, it is of utmost importance to provide high-quality, standardized patient care. To address these issues and harmonize care across Europe, the Familial Leukemia Subnetwork within the ERN PaedCan has been assigned to draft an European Standard Clinical Practice (ESCP) document reflecting current best practices for pediatric patients and (healthy) relatives with (suspected) familial leukemia. The group was supported by members of the German network for rare diseases MyPred, of the Host Genome Working Group of SIOPE, and of the COST action LEGEND. The ESCP on familial leukemia is proposed by an interdisciplinary team of experts including hematologists, oncologists, and human geneticists. It is intended to provide general recommendations in areas where disease-specific recommendations do not yet exist. Here, we describe key issues for the medical care of familial leukemia that shall pave the way for a future consensus guideline: (i) identification of individuals with or suggestive of familial leukemia, (ii) genetic analysis and variant interpretation, (iii) genetic counseling and patient education, and (iv) surveillance and (psychological) support. To address the question on how to proceed with individuals suggestive of or at risk of familial leukemia, we developed an algorithm covering four different, partially linked clinical scenarios, and additionally a decision tree to guide clinicians in their considerations regarding familial leukemia in minors with HM. Our recommendations cover, not only patients but also relatives that both should have access to adequate medical care. We illustrate the importance of natural history studies and the need for respective registries for future evidence-based recommendations that shall be updated as new evidence-based standards are established.


Subject(s)
Genetic Predisposition to Disease , Leukemia , Humans , Child , Genetic Counseling , Germ-Line Mutation , Transcription Factors , Intracellular Signaling Peptides and Proteins
16.
Front Pediatr ; 10: 1046586, 2022.
Article in English | MEDLINE | ID: mdl-36440328

ABSTRACT

Twelve to 22% of pediatric acute myeloid leukemia (AML) patients present with hyperleukocytosis, which is one of the main risk factors of early death due to its clinical complications: leukostasis, causing pulmonary or central nervous system injuries, tumor lysis syndrome, and disseminated intravascular coagulation. Sorafenib is a multi-kinase inhibitor that blocks the Fms-Related Tyrosine Kinase 3 receptor (FLT3) in AML patients with a FLT3-internal tandem duplication (FLT3-ITD), leading to a reduction of proliferation. Here we report four de novo diagnosed or relapsed pediatric FLT3-ITD-positive AML patients with hyperleukocytosis, which were treated with sorafenib in combination with cytoreductive chemotherapy prior to the start of the induction phase. We observed a fast reduction of white blood cells in peripheral blood and bone marrow. This resulted in a rapid clinical stabilization of the patients. Adverse side effects-such as dermatologic toxicity, elevation of transaminases and hypertension-occurred but were mild and inductive chemotherapy could be started in parallel or subsequently. This implies sorafenib as a safe and effective treatment option in combination with chemotherapy during cytoreductive prephase for children with this life-threatening condition.

18.
Cells ; 11(16)2022 08 17.
Article in English | MEDLINE | ID: mdl-36010639

ABSTRACT

Despite fully functional primary hemostasis, platelets of healthy neonates exhibit hypoaggregability and secretion defects, which may be adaptations to specific requirements in this developmental stage. The etiologies for reduced signal transduction vary with the type of agonist. The discovered peculiarities are lower receptor densities, reduced calcium mobilization, and functional impairments of G proteins. Reduced secretion of dense granules has been attributed to lower numbers of granules. Signaling studies with adult platelets have shown a regulating effect of the G12/13 signaling pathway on dense granule secretion via RhoA. We comparatively analyzed secretion profiles using flow cytometry and expression levels of Gq, Gi, and G12/13 using Western blot analysis in platelets from cord blood and adults. Furthermore, we evaluated Rho activation after in vitro platelet stimulation with thrombin using a pulldown assay. We observed a markedly reduced expression of the dense granule marker CD63 on neonatal platelets after thrombin stimulation. Gα12/13 expression was significantly decreased in neonatal platelets and correlated with lower Rho activation after thrombin stimulation. We conclude that lower expression of G12/13 in neonatal platelets results in attenuated activation of Rho and may contribute to reduced secretion of dense granules after exposure to thrombin.


Subject(s)
Blood Platelets , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Thrombin , Blood Platelets/metabolism , GTP-Binding Proteins/metabolism , Hemostasis , Humans , Infant, Newborn , Signal Transduction , Thrombin/pharmacology
19.
Front Immunol ; 13: 951937, 2022.
Article in English | MEDLINE | ID: mdl-36032161

ABSTRACT

Hematopoiesis is a remarkable system that plays an important role in not only immune cell function, but also in nutrient transport, hemostasis and wound healing among other functions. Under inflammatory conditions, steady-state hematopoiesis switches to emergency myelopoiesis to give rise to the effector cell types necessary to fight the acute insult. Sustained or aberrant exposure to inflammatory signals has detrimental effects on the hematopoietic system, leading to increased proliferation, DNA damage, different forms of cell death (i.e., apoptosis, pyroptosis and necroptosis) and bone marrow microenvironment modifications. Together, all these changes can cause premature loss of hematopoiesis function. Especially in individuals with inherited bone marrow failure syndromes or immune-mediated aplastic anemia, chronic inflammatory signals may thus aggravate cytopenias and accelerate disease progression. However, the understanding of the inflammation roles in bone marrow failure remains limited. In this review, we summarize the different mechanisms found in mouse models regarding to inflammatory bone marrow failure and discuss implications for future research and clinical practice.


Subject(s)
Anemia, Aplastic , Pancytopenia , Animals , Bone Marrow Failure Disorders , Disease Models, Animal , Hematopoiesis , Hematopoietic Stem Cells , Inflammation , Mice
20.
Curr Opin Hematol ; 29(4): 181-187, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35787546

ABSTRACT

PURPOSE OF REVIEW: Dysregulated apoptosis contributes to the pathogenesis of many hematologic malignancies. BH3-mimetics, antagonists of antiapoptotic BCL-2 proteins, represent novel, and promising cancer drugs. While the acute myelosuppressive effects of Venetoclax, the first Food and Drug Administration approved BCL-2 inhibitor, are fairly well described, little is known about side effects of novel BH3-mimetics and effects of chronic Venetoclax treatment. RECENT FINDINGS: Highly relevant publications focused on the effects of acute and chronic Venetoclax therapy, with focus on cell-type specific adaptive mechanisms, the emergence of clonal hematopoiesis, and the selection of BAX-mutated hematopoietic cells in patients treated with Venetoclax for a long period. Important advances were made in understanding primary and secondary Venetoclax resistance and prediction of Venetoclax response. Combination therapies of BH3-mimetics targeting different BCL-2 proteins are highly anticipated. However, human stem and progenitors require both MCL-1 and BCL-XL for survival, and serious myelosuppressive effects of combined MCL-1/BCL-XL inhibition can be expected. SUMMARY: Long-term studies are indispensable to profile the chronic side effects of Venetoclax and novel BH3-mimetics and better balance their risk vs. benefit in cancer therapy. Combination therapies will be powerful, but potentially limited by severe myelosuppression. For precision medicine, a better knowledge of BCL-2 proteins in the healthy and diseased hematopoietic system is required.


Subject(s)
Antineoplastic Agents , Hematopoietic System , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Hematopoietic Stem Cells , Hematopoietic System/metabolism , Humans , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...