Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38738312

ABSTRACT

During the process of decidualization, the stromal cells of the endometrium change dynamically to create a favorable environment for embryo implantation. Lysosome activity has often been associated with physiological changes in the endometrium during the pre-implantation period and early pregnancy. In this study, the effect of para-nonylphenol (p-NP), an endocrine disruptor, on human immortalized endometrial stromal cells (tHESCs) was investigated. After exposure to p-NP (1 nM and 1 pM), the cells were examined for the decidualization markers Connexin-43, insulin like growth factor binding protein 1 (IGFBP1) and Prolactin. In addition, the effect of p-NP on lysosome biogenesis and exocytosis was investigated by examining the expression and localization of the transcription factor EB (TFEB) and that of the lysosomal-associated membrane protein 1 (LAMP-1). Finally, we evaluated the effect of p-NP on ECM remodeling using a fibronectin assay. Our results showed that p-NP reduced the expression of Prolactin protein, increased the nuclear localization of TFEB, and induced the increase and translocation of the lysosomal protein LAMP-1 to the membrane of tHESCs. The data indicate an impairment of decidualization and suggest an increase in lysosomal biogenesis and exocytosis, which is supported by the higher release of active cathepsin D by tHESCs. Given the importance of cathepsins in the processing and degradation of the ECM during trophoblast invasiveness and migration into the decidua, our results appear to be clear evidence of the negative effects of p-NP on endometrial processes that are fundamental to reproductive success and the establishment of pregnancy.

2.
J Extracell Vesicles ; 13(2): e12413, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38353485

ABSTRACT

Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.


Subject(s)
Extracellular Vesicles , Fetal Growth Retardation , Infant, Newborn , Pregnancy , Female , Humans , Fetal Growth Retardation/diagnosis , Placenta , Tandem Mass Spectrometry , Lipids
3.
Hum Cell ; 36(3): 1190-1198, 2023 May.
Article in English | MEDLINE | ID: mdl-36995581

ABSTRACT

Argininosuccinate synthase (ASS1) is involved in nitric oxide production, which has a key role in placental development improving pregnancy outcomes. Syncytiotrophoblast and extravillous trophoblast differentiations are milestones of placental development and their impairment can cause pathologies, such as preeclampsia (PE) and fetal growth restriction (FGR). Immunohistochemistry and Western blotting were used to localize and quantify ASS1 in first trimester (8.2 ± 1.8 weeks), third trimester (38.6 ± 1.1 weeks), and PE (36.3 ± 1.5 weeks) placentas. In addition, cell cultures were used to evaluate ASS1 expression under hypoxic conditions and the syncytialization process. Our data showed that ASS1 is localized in the villous cytotrophoblast of first trimester, third trimester, and PE placentas, while the villous cytotrophoblast adjacent to the extravillous trophoblast of cell columns as well as the extravillous trophoblast were negative for ASS1 in first trimester placentas. In addition, ASS1 was decreased in third trimester compared to the first trimester placentas (p = 0.003) and no differences were detected between third trimester and PE placentas. Moreover, ASS1 expression was decreased in hypoxic conditions and syncytialized cells compared to those not syncytialized. In conclusion, we suggest that the expression of ASS1 in villous cytotrophoblast is related to maintaining proliferative phenotype, while ASS1 absence may be involved in promoting the differentiation of villous cytotrophoblast in extravillous cytotrophoblast of cell columns in first trimester placentas.


Subject(s)
Placentation , Pre-Eclampsia , Humans , Pregnancy , Female , Placentation/physiology , Placenta , Argininosuccinate Synthase/metabolism , Down-Regulation , Trophoblasts/pathology , Pre-Eclampsia/pathology , Hypoxia/pathology
4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499644

ABSTRACT

Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.


Subject(s)
Ceramides , Extracellular Vesicles , Ceramides/metabolism , Protein Transport , Extracellular Vesicles/metabolism , Biological Transport , Lysosomes
5.
Cells ; 11(20)2022 10 11.
Article in English | MEDLINE | ID: mdl-36291063

ABSTRACT

Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 µg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.


Subject(s)
Benzhydryl Compounds , Exosomes , Fetal Blood , Glucose Transporter Type 1 , Myocardium , Phenols , Animals , Female , Pregnancy , Rats , Exosomes/drug effects , Exosomes/metabolism , Fatty Acids/metabolism , Fetal Blood/drug effects , Fetal Blood/metabolism , Fetus/metabolism , Glucose Transporter Type 1/metabolism , Myocardium/metabolism , Benzhydryl Compounds/adverse effects , Phenols/adverse effects , Diet
6.
Cells ; 11(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35456036

ABSTRACT

Women with multiple sclerosis (MS) can safely become pregnant and give birth, with no side effects or impediments. Pregnancy is generally accepted as a period of well-being in which relapses have a softer evolution, particularly in the third trimester. Herein, we hypothesized that the placenta, via its "secretome", could contribute to the recognized beneficial effects of pregnancy on MS activity. We focused on a well-known receptor/ligand/decoy receptor system, such as the one composed by the receptor activator of nuclear factor-kB (RANK), its ligand (RANKL), and the decoy receptor osteoprotegerin (OPG), which have never been investigated in an integrated way in MS, pregnancy, and placenta. We reported that pregnancy at the term of gestation influences the balance between circulating RANKL and its endogenous inhibitor OPG in MS women. We demonstrated that the placenta at term is an invaluable source of homodimeric OPG. By functional studies on astrocytes, we showed that placental OPG suppresses the mRNA expression of the CCL20, a chemokine responsible for Th17 cell recruitment. We propose placental OPG as a crucial molecule for the recognized beneficial effect of late pregnancy on MS and its potential utility for the development of new and more effective therapeutic approaches.


Subject(s)
Multiple Sclerosis , Female , Humans , Ligands , Multiple Sclerosis/metabolism , Osteoprotegerin/metabolism , Placenta/metabolism , Pregnancy , Protein Binding , RANK Ligand/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism
7.
Sci Rep ; 12(1): 2155, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35140261

ABSTRACT

The influence of large vessels on near infrared spectroscopy (NIRS) measurement is generally considered negligible. Aim of this study is to test the hypothesis that changes in the vessel size, by varying the amount of absorbed NIR light, could profoundly affect NIRS blood volume indexes. Changes in haemoglobin concentration (tHb) and in tissue haemoglobin index (THI) were monitored over the basilic vein (BV) and over the biceps muscle belly, in 11 subjects (7 M - 4 F; age 31 ± 8 year) with simultaneous ultrasound monitoring of BV size. The arm was subjected to venous occlusion, according to two pressure profiles: slow (from 0 to 60 mmHg in 135 s) and rapid (0 to 40 mmHg maintained for 30 s). Both tHb and THI detected a larger blood volume increase (1.7 to 4 fold; p < 0.01) and exhibited a faster increase and a greater convexity on the BV than on the muscle. In addition, NIRS signals from BV exhibited higher correlation with changes in BV size than from muscle (r = 0.91 vs 0.55, p < 0.001 for THI). A collection of individual relevant recordings is also included. These results challenge the long-standing belief that the NIRS measurement is unaffected by large vessels and support the concept that large veins may be a major determinant of blood volume changes in multiple experimental conditions.


Subject(s)
Blood Volume , Muscle, Skeletal/blood supply , Spectroscopy, Near-Infrared , Veins/anatomy & histology , Adult , Hemoglobins/analysis , Humans , Male , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/chemistry , Ultrasonography , Veins/diagnostic imaging
9.
J Ultrasound Med ; 41(9): 2247-2258, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34877689

ABSTRACT

OBJECTIVES: Inferior vena cava (IVC) pulsatility quantified by the Caval Index (CI) is characterized by poor reliability, also due to the irregular magnitude of spontaneous respiratory activity generating the major pulsatile component. The aim of this study was to test whether the IVC cardiac oscillatory component could provide a more stable index (Cardiac CI-CCI) compared to CI or respiratory CI (RCI). METHODS: Nine healthy volunteers underwent long-term monitoring in supine position of IVC, followed by 3 minutes passive leg raising (PLR). CI, RCI, and CCI were extracted from video recordings by automated edge-tracking and CCI was averaged over each respiratory cycle (aCCI). Cardiac output (CO), mean arterial pressure (MAP) and heart rate (HR) were also recorded during baseline (1 minutes prior to PLR) and PLR (first minute). RESULTS: In response to PLR, all IVC indices decreased (P < .01), CO increased by 4 ± 4% (P = .055) while HR and MAP did not vary. The Coefficient of Variation (CoV) of aCCI (13 ± 5%) was lower than that of CI (17 ± 5%, P < .01), RCI (26 ± 7%, P < .001) and CCI (25 ± 7%, P < .001). The mutual correlations in time of the indices were 0.81 (CI-RCI), 0.49 (CI-aCCI) and 0.2 (RCI-aCCI). CONCLUSIONS: Long-term IVC monitoring by automated edge-tracking allowed us to evidence that 1) respiratory and averaged cardiac pulsatility components are uncorrelated and thus carry different information and 2) the new index aCCI, exhibiting the lowest CoV while maintaining good sensitivity to blood volume changes, may overcome the poor reliability of CI and RCI.


Subject(s)
Heart , Vena Cava, Inferior , Blood Volume , Cardiac Output , Humans , Reproducibility of Results , Vena Cava, Inferior/diagnostic imaging
10.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205666

ABSTRACT

Bisphenol A (BPA) is a synthetic phenol extensively used in the manufacture of polycarbonate plastics and epoxy resins and a component of liquid and food storages. Among health disorders potentially attributed to BPA, the effects on metabolism have been especially studied. BPA represents a hazard in prenatal life because of its presence in tissues and fluids during pregnancy. Our recent study in rats fed with BPA showed a placental increase in glucose type 1 transporter (GLUT-1), suggesting a higher uptake of glucose. However, the role of BPA on GLUT transporters in pregnant women with metabolic dysfunction has not yet been investigated. In this study, placental tissue from 26 overweight (OW) women and 32 age-matched normal weight (NW) pregnant women were examined for expression of GLUT1 and GLUT4. Placental explants from OW and NW mothers were exposed to BPA 1 nM and 1 µM and tested for GLUTs expression. The data showed a different response of placental explants to BPA in GLUT1 expression with an increase in NW mothers and a decrease in OW ones. GLUT4 expression was lower in the explants from OW than NW mothers, while no difference was showed between OW and NW in placental biopsies for any of the transporters.


Subject(s)
Benzhydryl Compounds/toxicity , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/metabolism , Overweight/complications , Phenols/toxicity , Placenta/drug effects , Pregnancy Complications/chemically induced , Adult , Case-Control Studies , Female , Humans , Overweight/metabolism , Placenta/metabolism , Pregnancy , Pregnancy Complications/metabolism
11.
Front Cell Dev Biol ; 9: 652607, 2021.
Article in English | MEDLINE | ID: mdl-34055782

ABSTRACT

The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.

12.
Front Cell Dev Biol ; 9: 652651, 2021.
Article in English | MEDLINE | ID: mdl-34017832

ABSTRACT

Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.

13.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673075

ABSTRACT

Proinflammatory cytokines are produced in pregnancy in response to the invading pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflammatory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of the innate immune response and a major player of processes allowing normal placental development. PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and generalized endothelial damage. In some cases, usually of early onset, it originates from a maldevelopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for the development of the disease (maternal PE). Available data suggest that low MIF production in early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More studies are needed to understand the role of MIF, if any, in maternal PE.


Subject(s)
Fetal Growth Retardation/blood , Intramolecular Oxidoreductases/blood , Macrophage Migration-Inhibitory Factors/blood , Placenta/metabolism , Pre-Eclampsia/blood , Female , Fetal Growth Retardation/pathology , Humans , Placenta/pathology , Pre-Eclampsia/pathology , Pregnancy
14.
Front Cardiovasc Med ; 8: 775635, 2021.
Article in English | MEDLINE | ID: mdl-35127855

ABSTRACT

Assessment of vascular size and of its phasic changes by ultrasound is important for the management of many clinical conditions. For example, a dilated and stiff inferior vena cava reflects increased intravascular volume and identifies patients with heart failure at greater risk of an early death. However, lack of standardization and sub-optimal intra- and inter- operator reproducibility limit the use of these techniques. To overcome these limitations, we developed two image-processing algorithms that quantify phasic vascular deformation by tracking wall movements, either in long or in short axis. Prospective studies will verify the clinical applicability and utility of these methods in different settings, vessels and medical conditions.

15.
Article in English | MEDLINE | ID: mdl-32144130

ABSTRACT

INTRODUCTION: Gestational diabetes mellitus (GDM), a common pregnancy disorder, increases the risk of fetal overgrowth and later metabolic morbidity in the offspring. The placenta likely mediates these sequelae, but the exact mechanisms remain elusive. Mitochondrial dynamics refers to the joining and division of these organelles, in attempts to maintain cellular homeostasis in stress conditions or alterations in oxygen and fuel availability. These remodeling processes are critical to optimize mitochondrial function, and their disturbances characterize diabetes and obesity. METHODS AND RESULTS: Herein we show that placental mitochondrial dynamics are tilted toward fusion in GDM, as evidenced by transmission electron microscopy and changes in the expression of key mechanochemical enzymes such as OPA1 and active phosphorylated DRP1. In vitro experiments using choriocarcinoma JEG-3 cells demonstrated that increased exposure to insulin, which typifies GDM, promotes mitochondrial fusion. As placental ceramide induces mitochondrial fission in pre-eclampsia, we also examined ceramide content in GDM and control placentae and observed a reduction in placental ceramide enrichment in GDM, likely due to an insulin-dependent increase in ceramide-degrading ASAH1 expression. CONCLUSIONS: Placental mitochondrial fusion is enhanced in GDM, possibly as a compensatory response to maternal and fetal metabolic derangements. Alterations in placental insulin exposure and sphingolipid metabolism are among potential contributing factors. Overall, our results suggest that GDM has profound impacts on placental mitochondrial dynamics and metabolism, with plausible implications for the short-term and long-term health of the offspring.


Subject(s)
Diabetes, Gestational/physiopathology , Mitochondrial Dynamics , Placenta/physiopathology , Cell Line , Ceramides/metabolism , Diabetes, Gestational/metabolism , Female , Homeostasis , Humans , Insulin/administration & dosage , Insulin/metabolism , Mitochondria/metabolism , Mitochondria/physiology , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Placenta/metabolism , Placenta/ultrastructure , Pregnancy
16.
Ultrasound Med Biol ; 46(3): 849-854, 2020 03.
Article in English | MEDLINE | ID: mdl-31810802

ABSTRACT

Central venous pressure and volume status are relevant parameters for characterization of a patient's hemodynamic condition; however, their invasive assessment is affected by various risks while non-invasive approaches provide limited and subjective indications. Here we explore the possibility of assessing venous pulse wave velocity (vPWV), a potential indicator of venous pressure changes. In eight healthy patients, pressure pulses were generated artificially in the leg veins by rapid compression of the foot, and their propagation was detected at the level of the superficial femoral vein with Doppler ultrasound. Changes in leg venous pressure were obtained by raising the trunk from the initial supine position by 30° and 60°. vPWV increased from 1.78 ± 0.06 m/s (supine) to 2.26 ± 0.19 m/s (60°) (p < 0.01) and exhibited an overall linear relationship with venous pressure. These results indicate that vPWV can be easily assessed, and is a non-invasive indicator of venous pressure changes.


Subject(s)
Pulse Wave Analysis , Veins/diagnostic imaging , Veins/physiology , Adult , Humans , Leg/blood supply , Reference Values , Ultrasonography, Doppler , Young Adult
17.
J Clin Invest ; 129(7): 2904-2919, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31162135

ABSTRACT

Bronchopulmonary dysplasia (BPD) remains a major respiratory illness in extremely premature infants. The biological mechanisms leading to BPD are not fully understood, although an arrest in lung development has been implicated. The current study aimed to investigate the occurrence of autophagy in the developing mouse lung and its regulatory role in airway branching and terminal sacculi formation. We found 2 windows of epithelial autophagy activation in the developing mouse lung, both resulting from AMPK activation. Inhibition of AMPK-mediated autophagy led to reduced lung branching in vitro. Conditional deletion of beclin 1 (Becn1) in mouse lung epithelial cells (Becn1Epi-KO), either at early (E10.5) or late (E16.5) gestation, resulted in lethal respiratory distress at birth or shortly after. E10.5 Becn1Epi-KO lungs displayed reduced airway branching and sacculi formation accompanied by impaired vascularization, excessive epithelial cell death, reduced mesenchymal thinning of the interstitial walls, and delayed epithelial maturation. E16.5 Becn1Epi-KO lungs had reduced terminal air sac formation and vascularization and delayed distal epithelial differentiation, a pathology similar to that seen in infants with BPD. Taken together, our findings demonstrate that intrinsic autophagy is an important regulator of lung development and morphogenesis and may contribute to the BPD phenotype when impaired.


Subject(s)
Autophagic Cell Death , Bronchopulmonary Dysplasia/embryology , Lung/embryology , Organogenesis , Animals , Beclin-1/genetics , Beclin-1/metabolism , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/pathology , Lung/pathology , Mice , Mice, Knockout
18.
JCI Insight ; 4(8)2019 04 18.
Article in English | MEDLINE | ID: mdl-30996134

ABSTRACT

Human placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown. Herein, we show that AMOT is primarily expressed in migratory extravillous trophoblast cells (EVTs) of the intermediate and distal anchoring column. Its expression increases after 10 weeks of gestation when oxygen tension rises and EVT migration/invasion peaks. Time-lapse imaging confirmed that the AMOT 80-kDa isoform promotes migration of trophoblastic JEG3 and HTR-8/SVneo cells. In preeclampsia, however, AMOT expression is decreased and its localization to migratory fetomaternal interface EVTs is disrupted. We demonstrate that Jumonji C domain-containing protein 6 (JMJD6), an oxygen sensor, positively regulates AMOT via oxygen-dependent lysyl hydroxylation. Furthermore, in vitro and ex vivo studies show that transforming growth factor-ß (TGF-ß) regulates AMOT expression, its interaction with polarity protein PAR6, and its subcellular redistribution from tight junctions to cytoskeleton. Our data reveal an oxygen- and TGF-ß-driven migratory function for AMOT in the human placenta, and implicate its deficiency in impaired trophoblast migration that plagues preeclampsia.


Subject(s)
Intercellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Oxygen/metabolism , Pre-Eclampsia/pathology , Trophoblasts/pathology , Angiomotins , Cell Line, Tumor , Cell Movement , Disease Susceptibility , Female , Gestational Age , Humans , Infant, Newborn , Intravital Microscopy , Jumonji Domain-Containing Histone Demethylases/metabolism , Male , Placentation , Pregnancy , Pregnancy Trimester, First , Protein Isoforms/metabolism , Time-Lapse Imaging , Trophoblasts/metabolism
19.
Am J Respir Crit Care Med ; 199(6): 760-772, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30326731

ABSTRACT

RATIONALE: Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown. OBJECTIVES: To determine the contribution of autophagy to MV-induced epithelial cell death in newborn rat lungs. METHODS: Newborn rat lungs and fetal rat lung epithelial (FRLE) cells were exposed to MV and cyclic stretch, respectively, and were then analyzed by immunoblotting and mass spectrometry for autophagy, apoptosis, and bioactive sphingolipids. MEASUREMENTS AND MAIN RESULTS: Both MV and stretch first induce autophagy (ATG 5-12 [autophagy related 5-12] and LC3B-II [microtubule-associated proteins 1A/1B light chain 3B-II] formation) followed by extrinsic apoptosis (cleaved CASP8/3 [caspase-8/3] and PARP [poly(ADP-ribose) polymerase] formation). Stretch-induced apoptosis was attenuated by inhibiting autophagy. Coimmunoprecipitation revealed that stretch promoted an interaction between LC3B and the FAS (first apoptosis signal) cell death receptor in FRLE cells. Ceramide levels, in particular C16 ceramide, were rapidly elevated in response to ventilation and stretch, and C16 ceramide treatment of FRLE cells induced autophagy and apoptosis in a temporal pattern similar to that seen with MV and stretch. SMPD1 (sphingomyelin phosphodiesterase 1) was activated by ventilation and stretch, and its inhibition prevented ceramide production, LC3B-II formation, LC3B/first apoptosis signal interaction, caspase-3 activation, and, ultimately, FLRE cell death. SMPD1 inhibition also attenuated ventilation-induced autophagy and apoptosis in newborn rats. CONCLUSIONS: Ventilation-induced ceramides promote autophagy-mediated cell death, and identifies SMPD1 as a potential therapeutic target for the treatment of ventilation-induced lung injury in newborns.


Subject(s)
Cell Death/drug effects , Epithelial Cells/drug effects , Infant, Newborn/physiology , Lung/metabolism , Respiration, Artificial , Sphingomyelin Phosphodiesterase/metabolism , Animals , Animals, Newborn , Humans , Models, Animal , Rats
20.
Cell Death Dis ; 9(3): 298, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463805

ABSTRACT

Mitochondria are in a constant balance of fusing and dividing in response to cellular cues. Fusion creates healthy mitochondria, whereas fission results in removal of non-functional organelles. Changes in mitochondrial dynamics typify several human diseases. However, the contribution of mitochondrial dynamics to preeclampsia, a hypertensive disorder of pregnancy characterized by placental cell autophagy and death, remains unknown. Herein, we show that the mitochondrial dynamic balance in preeclamptic placentae is tilted toward fission (increased DRP1 expression/activation and decreased OPA1 expression). Increased phosphorylation of DRP1 (p-DRP1) in mitochondrial isolates from preeclamptic placentae and transmission electron microscopy corroborated augmented mitochondrial fragmentation in cytotrophoblast cells of PE placentae. Increased fission was accompanied by build-up of ceramides (CERs) in mitochondria from preeclamptic placentae relative to controls. Treatment of human choriocarcinoma JEG3 cells and primary isolated cytrophoblast cells with CER 16:0 enhanced mitochondrial fission. Loss- and gain-of-function experiments showed that Bcl-2 member BOK, whose expression is increased by CER, positively regulated p-DRP1/DRP1 and MFN2 expression, and localized mitochondrial fission events to the ER/MAM compartments. We also identified that the BH3 and transmembrane domains of BOK were vital for BOK regulation of fission. Moreover, we found that full-length PTEN-induced putative kinase 1 (PINK1) and Parkin, were elevated in mitochondria from PE placentae, implicating mitophagy as the process that degrades excess mitochondria fragments produced from CER/BOK-induced fission in preeclampsia. In summary, our study uncovered a novel CER/BOK-induced regulation of mitochondrial fission and its functional consequence for heightened trophoblast cell autophagy in preeclampsia.


Subject(s)
Ceramides/metabolism , Mitochondrial Dynamics , Pre-Eclampsia/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Adult , Animals , Autophagy , Ceramides/adverse effects , Dynamins/genetics , Dynamins/metabolism , Female , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Male , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Phosphorylation , Placenta/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/physiopathology , Pregnancy , Protein Domains , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...