Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8142, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065964

ABSTRACT

To ameliorate or even prevent signatures of aging in ultimately humans, we here report the identification of a previously undescribed polyacetylene contained in the root of carrots (Daucus carota), hereafter named isofalcarintriol, which we reveal as potent promoter of longevity in the nematode C. elegans. We assign the absolute configuration of the compound as (3 S,8 R,9 R,E)-heptadeca-10-en-4,6-diyne-3,8,9-triol, and develop a modular asymmetric synthesis route for all E-isofalcarintriol stereoisomers. At the molecular level, isofalcarintriol affects cellular respiration in mammalian cells, C. elegans, and mice, and interacts with the α-subunit of the mitochondrial ATP synthase to promote mitochondrial biogenesis. Phenotypically, this also results in decreased mammalian cancer cell growth, as well as improved motility and stress resistance in C. elegans, paralleled by reduced protein accumulation in nematodal models of neurodegeneration. In addition, isofalcarintriol supplementation to both wild-type C57BL/6NRj mice on high-fat diet, and aged mice on chow diet results in improved glucose metabolism, increased exercise endurance, and attenuated parameters of frailty at an advanced age. Given these diverse effects on health parameters in both nematodes and mice, isofalcarintriol might become a promising mitohormesis-inducing compound to delay, ameliorate, or prevent aging-associated diseases in humans.


Subject(s)
Caenorhabditis elegans , Daucus carota , Humans , Animals , Mice , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Mice, Inbred C57BL , Aging , Longevity , Polyynes/metabolism , Mammals
2.
Nat Commun ; 13(1): 107, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013237

ABSTRACT

Aging is impacted by interventions across species, often converging on metabolic pathways. Transcription factors regulate longevity yet approaches for their pharmacological modulation to exert geroprotection remain sparse. We show that increased expression of the transcription factor Grainyhead 1 (GRH-1) promotes lifespan and pathogen resistance in Caenorhabditis elegans. A compound screen identifies FDA-approved drugs able to activate human GRHL1 and promote nematodal GRH-1-dependent longevity. GRHL1 activity is regulated by post-translational lysine methylation and the phosphoinositide (PI) 3-kinase C2A. Consistently, nematodal longevity following impairment of the PI 3-kinase or insulin/IGF-1 receptor requires grh-1. In BXD mice, Grhl1 expression is positively correlated with lifespan and insulin sensitivity. In humans, GRHL1 expression positively correlates with insulin receptor signaling and also with lifespan. Fasting blood glucose levels, including in individuals with type 2 diabetes, are negatively correlated with GRHL1 expression. Thereby, GRH-1/GRHL1 is identified as a pharmacologically malleable transcription factor impacting insulin signaling and lifespan.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Class II Phosphatidylinositol 3-Kinases/genetics , Diabetes Mellitus, Type 2/genetics , Insulin-Like Growth Factor I/genetics , Insulin/metabolism , Longevity/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Animals, Genetically Modified , Blood Glucose/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Class II Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Gene Expression Regulation , Humans , Insulin Resistance , Insulin-Like Growth Factor I/metabolism , Longevity/drug effects , Methylation , Mice , Papaverine/pharmacology , Repressor Proteins/metabolism , Signal Transduction , Transcription Factors/metabolism , Vorinostat/pharmacology
3.
J Nat Prod ; 84(9): 2502-2510, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34304557

ABSTRACT

The cis-stereoisomers of Δ9-THC [(-)-3 and (+)-3] were identified and quantified in a series of low-THC-containing varieties of Cannabis sativa registered in Europe as fiber hemp and in research accessions of cannabis. While Δ9-cis-THC (3) occurs in cannabis fiber hemp in the concentration range of (-)-Δ9-trans-THC [(-)-1], it was undetectable in a sample of high-THC-containing medicinal cannabis. Natural Δ9-cis-THC (3) is scalemic (ca. 80-90% enantiomeric purity), and the absolute configuration of the major enantiomer was established as 6aS,10aR [(-)-3] by chiral chromatographic comparison with a sample available by asymmetric synthesis. The major enantiomer, (-)-Δ9-cis-THC [(-)-3], was characterized as a partial cannabinoid agonist in vitro and elicited a full tetrad response in mice at 50 mg/kg doses. The current legal discrimination between narcotic and non-narcotic cannabis varieties centers on the contents of "Δ9-THC and isomers" and needs therefore revision, or at least a more specific wording, to account for the presence of Δ9-cis-THCs [(+)-3 and (-)-3] in cannabis fiber hemp varieties.


Subject(s)
Cannabinoids/agonists , Dronabinol/pharmacology , Animals , Cannabis/chemistry , Dronabinol/chemistry , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Stereoisomerism
4.
Angew Chem Int Ed Engl ; 57(34): 11009-11014, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29935040

ABSTRACT

The naphterpins and marinones are naphthoquinone meroterpenoids with an unusual aromatic oxidation pattern that is biosynthesized from 1,3,6,8-tetrahydroxynaphthalene (THN). We propose that cryptic halogenation of THN derivatives by vanadium-dependent chloroperoxidase (VCPO) enzymes is key to this biosynthetic pathway, despite the absence of chlorine in these natural products. This speculation inspired a total synthesis to mimic the naphterpin/marinone biosynthetic pathway. In validation of this biogenetic hypothesis, two VCPOs were discovered that interconvert several of the proposed biosynthetic intermediates.


Subject(s)
Biological Products/metabolism , Naphthoquinones/metabolism , Terpenes/metabolism , Biological Products/chemistry , Biomimetics , Chloride Peroxidase/metabolism , Cyclization , Halogenation , Naphthols/chemistry , Naphthols/metabolism , Naphthoquinones/chemistry , Oxidation-Reduction , Reproducibility of Results , Terpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...